We report phonon densities of states (DOS) of iron measured by nuclear resonant inelastic x-ray scattering to 153 gigapascals and calculated from ab initio theory. Qualitatively, they are in agreement, but the theory predicts density at higher energies. From the DOS, we derive elastic and thermodynamic parameters of iron, including shear modulus, compressional and shear velocities, heat capacity, entropy, kinetic energy, zero-point energy, and Debye temperature. In comparison to the compressional and shear velocities from the preliminary reference Earth model (PREM) seismic model, our results suggest that Earth's inner core has a mean atomic number equal to or higher than pure iron, which is consistent with an iron-nickel alloy.
The lattice dynamics of the hexagonal close-packed (hcp) phase of iron was studied with nuclear inelastic absorption of synchrotron radiation at pressures from 20 to 42 gigapascals. A variety of thermodynamic parameters were derived from the measured density of phonon states for hcp iron, such as Debye temperatures, Gruneisen parameter, mean sound velocities, and the lattice contribution to entropy and specific heat. The results are of geophysical interest, because hcp iron is considered to be a major component of Earth's inner core.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.