The objecti Cambess) Eleven mat were fitted of Pequi fru Pequi pulp. (m 2 s-1) for t 7694.94 J m and 4925.13 251.01,-250 free energy consistent t of water wit Key words: TRODUCTION qui (Caryoca a typical fruit f h high nutritio the regional eparation of ditional dishe oughout Braz 2013).
This study explores the impact of temperature and molarity in the pyrolysis of Açaí seeds (Euterpe Oleraceae, Mart.) activated with KOH on the yield of bio-oil, hydrocarbon content of bio-oil, and chemical composition of aqueous phase. The experiments were carried out at 350, 400, and 450 °C and 1.0 atmosphere, with 2.0 M KOH, and at 450 °C and 1.0 atmosphere, with 0.5 M, 1.0 M and 2.0 M KOH, in laboratory scale. The composition of bio-oils and aqueous phase determined by GC-MS, while the acid value, a physico-chemical property of fundamental importance in bio-fuels, of bio-oils and aqueous phases by AOCS methods. The solid phase (biochar) characterized by X-ray diffraction (XRD). The diffractograms identified the presence of Kalicinite (KHCO3) in biochar, and those higher temperatures favor the formation peaks of Kalicinite (KHCO3). The pyrolysis of Açaí seeds activated with KOH show bio-oil yields from 3.19 to 6.79 (wt.%), aqueous phase yields between 20.34 and 25.57 (wt.%), solid phase yields (coke) between 33.40 and 43.37 (wt.%), and gas yields from 31.85 to 34.45 (wt.%). The yield of bio-oil shows a smooth exponential increase with temperature. The acidity of bio-oil varied between 12.3 and 257.6 mgKOH/g, decreasing exponentially with temperature, while that of aqueous phase between 17.9 and 118.9 mgKOH/g, showing and exponential decay behavior with temperature, demonstrating that higher temperatures favor not only the yield of bio-oil but also bio-oils with lower acidity. For the experiments with KOH activation, the GC-MS of bio-oil identified the presence of hydrocarbons (alkanes, alkenes, cycloalkanes, cycloalkenes, and aromatics) and oxygenates (carboxylic acids, phenols, ketones, and esters). The concentration of hydrocarbons varied between 10.19 to 25.71 (area.%), increasing with temperature, while that of oxygenates from 52.69 to 72.15 (area.%), decreasing with temperature. For the experiments with constant temperature, the concentrations of hydrocarbons in bio-oil increase exponentially with molarity, while those of oxygenates decrease exponentially, showing that higher molarities favor the formation of hydrocarbons in bio-oil. Finally, it can be concluded that chemical activation of Açaí seeds with KOH favors the not only the yield of bio-oil but also the content of hydrocarbons. The study of process variables is of utmost importance in order to clearly assess reaction mechanisms, economic viability and design goals that could be derived from chemically activated biomass pyrolysis processes.
This study explores the impact of temperature and molarity on the pyrolysis of Açaí seeds (Euterpe Oleraceae, Mart.) activated with KOH on the yield of bio-oil, hydrocarbon content of bio-oil, antioxidant activity of bio-oil and chemical composition of aqueous phase. The experiments were carried out at 350, 400, and 450 °C and 1.0 atmosphere, with 2.0 M KOH, and at 450 °C and 1.0 at-mosphere, with 0.5 M, 1.0 M and 2.0 M KOH, in laboratory scale. The composition of bio-oils and aqueous phase determined by GC-MS, while the acid value, a physical-chemical property of fundamental importance in biofuels, of bio-oils and aqueous phases by AOCS methods. The antioxidant activity of bio-oils determined by the TEAC method. The solid phase (biochar) characterized by X-ray diffraction (XRD). The diffractograms identified the presence of Kalicinite (KHCO3) in bio-char, and those higher temperatures favor the formation peaks of Kalicinite (KHCO3). The pyrolysis of Açaí seeds activated with KOH show bio-oil yields from 3.19 to 6.79 (wt.%), aqueous phase yields between 20.34 and 25.57 (wt.%), solid phase yields (coke) between 33.40 and 43.37 (wt.%), and gas yields from 31.85 to 34.45 (wt.%). The yield of bio-oil shows a smooth exponential increase with temperature. The acidity of bio-oil varied between 12.3 and 257.6 mgKOH/g, decreasing exponentially with temperature, while that of aqueous phase between 17.9 and 118.9 mgKOH/g, showing and exponential decay behavior with temperature, demonstrating that higher temperatures favor not only the yield of bio-oil but also bio-oils with lower acidity. For the experiments with KOH activation, the GC-MS of bio-oil identified the presence of hydrocarbons (alkanes, alkenes, cycloalkanes, cycloalkenes, and aromatics) and oxygenates (carboxylic acids, phenols, ketones, and esters). The concentration of hydrocarbons varied between 10.19 to 25.71 (area.%), increasing with temperature, while that of oxygenates from 52.69 to 72.15 (area.%), decreasing with temperature. For the experiments with constant temperature, the concentrations of hydrocarbons in bio-oil in-crease exponentially with molarity, while those of oxygenates decrease exponentially, showing that higher molarities favor the formation of hydrocarbons in bio-oil. The antioxidant activity of bio-oils decreases with increasing temperature, as the content of phenolic compounds decreases, and de-creases with increasing KOH molarity, as higher molarities favors the formation of hydrocarbons. Finally, it can be concluded that chemical activation of Açaí seeds with KOH favors the not only the yield of bio-oil but also the content of hydrocarbons. The study of process variables is of utmost importance in order to clearly assess reaction mechanisms, economic viability and design goals that could be derived from chemically activated biomass pyrolysis processes.
The aim of the present study was to evaluate the postharvest behavior of tangerine coated with different pectin concentrations during storage under controlled temperature (22°C ± 0.1). Fruits with green color (± 90% of the surface) were divided into four groups: fruits without any coating (T1) and fruits coated with pectin solution at 4 g / 100 g (T2), 6 ml / 100 ml (T3) and 8 g / 100 ml (T4). Tangerines were evaluated during the storage period (0, 3, 6, 9, 12 and 15 days) for the following parameters: vitamin C, soluble solids (SS), total titratable acidity (TTA), mass loss, turgidity pressure and external appearance through colorimetric analysis. In general, coated fruits showed lower mass loss over the storage period. The polynomial model was the model that best suited the experimental data. Regarding to the physicochemical characteristics, the citrus fruits and non-climacteric, showed little variation in the treatments and changes that have occurred and which can be explained by the variability of the fruits used. In general, the fruit treated with different concentrations of pectin kept green for longer period and with this feature of the fruits, is better accepted by the consumer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.