Red amaranth Amaranthus cruentus L. is a valuable fodder and grain crop. To generate new varieties of this plant, genetic transformation methods can be used, but for A. cruentus such methods remain undeveloped. The present study describes the results of our research in Agrobacteriummediated transformation of epicotyl segments of A. cruentus variety "Bagryanyi" by the ARGOS-LIKE transgene of Arabidopsis thaliana controlled by the 35S promoter in the binary vector pCambia 1301 with a selective hygromycin B resistance gene. For shoot regeneration from epicotyl segments after Agrobacterium-mediated transformation, Murashige-Skoog (MS) medium containing 13 μM 6-benzylaminopurine and 1 μM 1-naphthylacetic acid was used. For the selection of transgenic shoots, 10 mg/L of hygromycin B was added to the MS medium. Rooting of shoots was performed on selective MS medium supplemented with 2 μM 3-indoleacetic acid. Three transgenic amaranth plants with the genetic engineering structure 35S::ARGOS-LIKE were generated. The efficiency of Agrobacteriummediated transformation of A. cruentus was 4%. The amaranth plants transgenicity was confirmed by the PCR analysis for the presence of marker and target genes. Two transgenic plants were acclimatized to soil and open air conditions.
The present study describes the results of our research in Agrobacterium-mediated transformation of epicotyl segments of Amaranthus cruentus variety “Bagryanyi” by the ARGOS-LIKE transgene of Arabidopsis thaliana controlled by the 35S promoter. For shoot regeneration from epicotyl segments after Agrobacterium-mediated transformation, Murashige-Skoog (MS) medium containing 13 μM 6-benzylaminopurine and 1 μM α-naphthylacetic acid was used. For the selection of transgenic shoots, 10 mg/L of hygromycin B was added to the MS medium.
Background. One of the important indicators of the nutritional value of amaranth is the high content of protein and lipids in seeds. Hence, obtaining and identifying such forms of amaranth through breeding, so that they also possessed resistance to abiotic stressors, is an important task.Materials and methods. Leaves and seeds of Amaranthus cruentus L. and mutants of the second inbred generation obtained by treatment with sodium azide were analyzed. The Bradford assay was used to measure the content of total soluble protein, lipid analysis was performed by thin-layer chromatography, the state of the antioxidant system was assessed according to catalase and peroxidase activities and the rate of superoxide anion formation. Mathematical data were processed using the Statistica 10.0 software.Results. The highest concentration of total protein in seeds was 13.78 mg/g in one of the mutants obtained after treatment with 3 mM sodium azide. Fifteen fatty acids were found in amaranth seeds, and in four mutants a significant increase in the percentage of omega-6 unsaturated linoleic acid was recorded. An increase in salt tolerance compared to the control was observed in mutants No. 2 and No. 3. Mutant No. 2 under salinization demonstrated higher peroxidase activity and mutant No. 3 higher catalase activity; both mutants showed a reduced rate of superoxide anion formation compared to the control.Conclusion. Amaranth mutants identified for higher stress resistance, protein content and linoleic acid content can be recommended for further breeding to produce new cultivars of amaranth with economically valuable traits.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.