According to the Development Concept of the Digital Economy and Society in Ukraine, the priority of this area is to develop a substantial national policy on digitalization of education, as this is the key part of the education reform in Ukraine. For this reason, universities should firstly take into account the particularities of teaching the current generation of students and the needs of the digital society as a whole. This paper considers the process of transition from informatization to digitalization in society, implementation of digital support for the educational process in the university, development of the digital educational environment for the training university teachers, and proposes the digital tools for such an environment. The authors propose several ways to improve the development level of digitalization of the educational environment in the university. This is to take into account the needs of the digital society and the modern generation of students, provide a high level of the digital literacy formation of university graduates and support the development of a new digital security system of the modern university. Aiming to design the digital educational environment for increasing the of educators’ digital literacy level, the authors propose to develop and implement the following computer, multimedia and computer-based learning tools and equipment, which includes blended and distance learning classes, cloud technologies, tools of virtual and augmented reality, tools for gamification of the educational process, educational robotics, tools for learning 3D technologies, MOOCs.
According to the Development Concept of the Digital Economy and Society in Ukraine, the priority of this area is to develop a substantial national policy on digitalization of education, as this is the key part of the education reform in Ukraine. For this reason, universities should firstly take into account the particularities of teaching the current generation of students and the needs of the digital society as a whole. This paper considers the process of transition from informatization to digitalization in society, implementation of digital support for the educational process in the university, development of the digital educational environment for the training university teachers, and proposes the digital tools for such an environment. The authors propose several ways to improve the development level of digitalization of the educational environment in the university. This is to take into account the needs of the digital society and the modern generation of students, provide a high level of the digital literacy formation of university graduates and support the development of a new digital security system of the modern university. Aiming to design the digital educational environment for increasing the of educators’ digital literacy level, the authors propose to develop and implement the following computer, multimedia and computer-based learning tools and equipment, which includes blended and distance learning classes, cloud technologies, tools of virtual and augmented reality, tools for gamification of the educational process, educational robotics, tools for learning 3D technologies, MOOCs.
The features of the current-voltage characteristics of LEDs obtained on the basis of GaP-GaAsP solid solutions are considered. The results of studies of the effect of electron irradiation (E = 2 MeV, F = 3 · 1014 ÷ 2.6 · 1016 cm-2) on the main electrophysical parameters of GaAs1-xPx diodes (x = 0.85 – yellow, x = 0.45 – orange) are given. The increase of differential resistance, the series resistance of the base, and barrier potential are revealed. The processes of recovery of the investigated quantities during isochronous annealing are analyzed, the mechanisms of degradation-recovery phenomena are discussed.
We studied light-emitting diodes (LEDs) with quantum dots маde on the basis of a solid solution of In0.21Ga0.79N. Measurements of current-voltage characteristics and electroluminescence characteristics were carried out in the range of 77 ÷ 300 K. On the current-voltage characteristics in the range of 77 ÷ 150 K, areas of negative differential resistance, as well as a fine structure of radiation spectra, were detected. The results of the influence of electron irradiation (Ee = 2 MeV) on electroluminescence characteristics intensity and quantum yield of the studied samples are presented; the features of the temperature dependence of the glow intensity of irradiated LEDs were revealed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.