The objective of project is to reduce the micromotion of novel implant under the static loads using function of uniform design for FE analysis. Integrating the features of regular implant, a new implant model has been done. Micromotion of the novel implant was obtained using static structural FE analysis. Compared to the existing International team for implantology implants, the micromotion of the novel implant model was considerably decreased by static structural analysis. Six control factors were taken for achieving minimizes the micromotion of novel dental implant system. In the present work, uniform design technique was used to create a set of finite element analysis simulation: according to the uniform design method, all FE analysis simulation; compared to the original model, the micromotion is 0.01944mm and micromotion of improved design version is 0.01244mm. The improvement rate for the micromotion is 35.02%.
This article investigates the infinite-time ruin probabilities in a discrete-time stochastic economic environment platform under the assumption that the insurance risk-the total net loss within one time period is absolute-repeatedly-varying or suddenly-varying tailed, a different accurate estimates for the ruin probabilities are derived. In particular, some estimates found are standardized with respect to the time horizon, and so utilize in the case of infinite-time ruin.
The objective of project is to reduce the micromotion of novel implant under the static loads using function of uniform design for FE analysis. Integrating the features of regular implant, a new implant model has been done. Micromotion of the novel implant was obtained using static structural FE analysis. Compared to the existing International team for implantology implants, the micromotion of the novel implant model was considerably decreased by static structural analysis. Six control factors were taken for achieving minimizes the micromotion of novel dental implant system. In the present work, uniform design technique was used to create a set of finite element analysis simulation: according to the uniform design method, all FE analysis simulation; compared to the original model, the micromotion is 0.01944mm and micromotion of improved design version is 0.01244mm. The improvement rate for the micromotion is 35.02%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.