It is unclear whether cell division is driven by cortical relaxation outside the equatorial region or cortical contractility within the developing furrow alone. To approach this question, a technique is required that can monitor spatially-resolved changes in cortical stiffness with good time resolution. We employed atomic force microscopy (AFM), in force-mapping mode, to track dynamic changes in the stiffness of the cortex of adherent cultured cells along a single scan-line during M phase, from metaphase to cytokinesis. Video microscopy, which we used to correlate the AFM data with mitotic events identified by light microscopy, indicated that the AFM force-mapping technique does not perturb dividing cells. Here we show that cortical stiffening occurs over the equatorial region about 160 seconds before any furrow appears, and that this stiffening markedly increases as the furrow starts. By contrast, polar relaxation of cells does not seem to be an obligatory event for cell division to occur.
By applying an external electric field, we have studied the dc Stark shifts at the two states of a low-temperature
single-molecule optical switch. We observe a reversible change from a mainly quadratic field dependence to
a linear field dependence. The data analysis provides the S1−S0 dipole moment and polarizability differences
of both the original and photoproduct state. On the basis of these data, a detailed microscopic scenario for the
underlying nonphotochemical hole burning mechanism is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.