When silicon thin films are deposited by plasma enhanced chemical vapor deposition in a plasma regime close to that of the formation of powder, a new type of material, named polymorphous silicon (pm-Si:H) is obtained. pmSi:H exhibits enhanced transport properties as compared to state-of-the-art hydrogenated amorphous silicon (a-Si:H). The study of space-charge-limited current in n+-i-n+ structures along with the use of the modulated photocurrent technique, of the constant photocurrent method and of steady-state photoconductivity and dark conductivity measurements allows us to shed some light on the origin of these improved properties. It is shown that the midgap density of states in the samples studied here is at least ten times lower than in a-Si:H, and the electron capture cross section of deep gap states is also expected to be lower by a factor of 3–4 to account for photoconductivity results. An interesting field of theoretical research is now open in order to link these low densities of states and capture cross sections to the peculiar structure of this new material.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.