Nuclear magnetic resonance spectroscopy (NMR) and imaging (MRI) are important non-destructive investigative techniques for soft matter research. Continuous advancements have not only lead to more sensitive detection, and new applications, but have also enabled the shrinking of the detectable volume of sample, and a reduction in time needed to acquire a spectrum or image. At the same time, advances in microstructuring and on-chip laboratories have also continued unabated. In recent years these two broad areas have been productively joined into what we term micro nuclear magnetic resonance (mMR), an exciting development that includes miniaturized detectors and hyphenation with other laboratory techniques, for it opens up a range of new possibilities for the soft matter scientist. In this paper we review the available miniaturization technologies for NMR and MRI detection, and also suggest a way to compare the performance of the detectors. The paper also takes a close look at chiplaboratory augmented mMR, and applications within the broad soft matter area. The review aims to contribute to a better understanding of both the scientific potential and the actual limits of mMR tools in the various interdisciplinary soft matter research fields.
In this study, we report on a novel, multi-use, high-resolution NMR/MRI micro-detection probe for the screening of flat samples. It is based on a Helmholtz coil pair in the centre of the probe, built out of two 1.5 mm diameter wirebonded copper coils, resulting in a homogeneous distribution of the magnetic field. For liquids and suspensions, custom fabricated, disposable sample inserts are placed inside the pair and aligned automatically, preventing the sensor and the samples from contamination. The sensor was successfully tested in a 500 MHz (11.7 T) spectrometer where we achieved a linewidth of 1.79 Hz (3.58 ppb) of a water phantom. Nutation experiments revealed an overall B1-field uniformity of 92% (ratio in signal intensity at flip angles of 810°/90°), leading to a homogeneous excitation of concentration limited samples. To demonstrate the imaging capabilities of the detector, we acquired images of a solid and a liquid sample—of a piece of leaf, directly inserted into the probe and of a sample insert, filled with a suspension of 50 μm diameter polymer beads and deionized water, with in-plane resolutions of 20 × 20 μ m2 and 10 × 10 μ m2, respectively.
We present an integrated microfluidic device for on-chip nuclear magnetic resonance (NMR) studies of microscopic samples. The devices are fabricated by means of a MEMS compatible process, which joins the automatic wirebond winding of solenoidal microcoils and the manufacturing of a complex microfluidic network using dry-photoresist lamination. The wafer-scale cleanroom process is potentially capable of mass fabrication. Since the non-invasive NMR analysis technique is rather insensitive, particularly when microscopic sample volumes are to be investigated, we also focus on the optimization of the wirebonded microcoil for this purpose. The on-chip measurement of NMR signals from a 20 nl sample are evaluated for imaging analysis of microparticles, as well as for spectroscopy. Whereas the latter revealed that the sensitivity of the MEMS microcoil is comparable with hand-wound devices and achieves a full-width-half-maximum linewidth of 8 Hz, the imaging experiment demonstrated 10 μm isotropic spatial resolution within an experiment time of 38 min for a 3D image with a field of view of 1 mm × 1 mm × 0.5 mm (500 000 voxels).
In this paper we present a new fabrication method that combines for the first time popular SU-8 technology and PerMX dry-photoresist lamination for the manufacturing of high aspect ratio three-dimensional multi-level microfluidic networks. The potential of this approach, which further benefits from wafer-level manufacturing and accurate alignment of fluidic levels, is demonstrated by a highly integrated three-level microfluidic chip. The hereby achieved network complexity, including 24 fluidic vias and 16 crossing points of three individual microchannels on less than 13 mm 2 chip area, is unique for SU-8 based fluidic networks. We further report on excellent process compatibility between SU-8 and PerMX dryphotoresist which results in high interlayer adhesion strength. The tight pressure sealing of a fluidic channel (0.5 MPa for 1 h) is demonstrated for 150 lm narrow SU-8/PerMX bonding interfaces.
Das Sterilitatsverhalten von Forsythia besteht nun darin, daB alle Yurzgriffel-Bliiten untereinander steril sind. Das gleiche gilt von allen Langgriffel-Bliiten. Samen werden nur gebildet, wenn eine Yreuzung von Langgriffel-Bliiten x Yurzgriffel-Bliiten zustande kommt. Es gelang, die physiologischen Ursachen aufzu klaren23). 1 ) Der gelb gefarbte reife Pollen von L-und Y-Bltiten keimt in 30proz. Rohrzuckerlosung, wenn 0,1% Borslure zugesetzt wird. Der wei6liche unreife Pollen (aus Ynospen) von L-
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.