Muscular dystrophies with reduced glycosylation of alpha-dystroglycan (alpha-DG), commonly referred to as dystroglycanopathies, are a heterogeneous group of autosomal recessive conditions which include a wide spectrum of clinical severity. Reported phenotypes range from severe congenital onset Walker-Warburg syndrome (WWS) with severe structural brain and eye involvement, to relatively mild adult onset limb girdle muscular dystrophy (LGMD). Specific clinical syndromes were originally described in association with mutations in any one of six demonstrated or putative glycosyltransferases. Work performed on patients with mutations in the FKRP gene has identified that the spectrum of phenotypes due to mutations in this gene is much wider than originally assumed. To further define the mutation frequency and phenotypes associated with mutations in the other five genes, we studied a large cohort of patients with evidence of a dystroglycanopathy. Exclusion of mutations in FKRP was a prerequisite for participation in this study. Ninety-two probands were screened for mutations in POMT1, POMT2, POMGnT1, fukutin and LARGE. Homozygous and compound heterozygous mutations were detected in a total of 31 probands (34 individuals from 31 families); 37 different mutations were identified, of which 32 were novel. Mutations in POMT2 were the most prevalent in our cohort with nine cases, followed by POMT1 with eight cases, POMGnT1 with seven cases, fukutin with six cases and LARGE with only a single case. All patients with POMT1 and POMT2 mutations had evidence of either structural or functional central nervous system involvement including four patients with mental retardation and a LGMD phenotype. In contrast mutations in fukutin and POMGnT1 were detected in four patients with LGMD and no evidence of brain involvement. The majority of patients (six out of nine) with mutations in POMT2 had a Muscle-Eye-Brain (MEB)-like condition. In addition we identified a mutation in the gene LARGE in a patient with WWS. Our data expands the clinical phenotypes associated with POMT1, POMT2, POMGnT1, fukutin and LARGE mutations. Mutations in these five glycosyltransferase genes were detected in 34% of patients indicating that, after the exclusion of FKRP, the majority of patients with a dystroglycanopathy harbour mutations in novel genes.
Vici syndrome is a progressive neurodevelopmental multisystem disorder caused by mutations in the autophagy gene EPG5. Byrne et al. characterise the phenotype of 50 affected children, revealing callosal agenesis, cataracts, hypopigmentation, cardiomyopathy, immune dysfunction, developmental delay and microcephaly. Downregulation of epg5 in Drosophila results in autophagic abnormalities and progressive neurodegeneration.
Our results expand the spectrum of brain involvement associated with mutations in LARGE, POMGnT1, POMT1, and POMT2. Pontine clefts were visible in some dystroglycanopathy patients. Infratentorial structures were often affected in isolation, highlighting their susceptibility to involvement in these conditions.
Our data suggest that fukutin mutations occur outside Japan and can be associated with much milder phenotypes than Fukuyama congenital muscular dystrophy. These findings significantly expand the spectrum of phenotypes associated with fukutin mutations to include this novel form of limb girdle muscular dystrophy that we propose to name LGMD2L.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.