We give an overview of the Galaxy Evolution Explorer (GALEX), a NASA Explorer Mission launched on 2003 April 28. GALEX is performing the first space UV sky survey, including imaging and grism surveys in two bands (1350-1750 and 1750-2750 galaxy survey. Spectroscopic (slitless) grism surveys ( ) are underway with various depths and sky R p 100-200 coverage. Many targets overlap existing or planned surveys in other bands. We will use the measured UV properties of local galaxies, along with corollary observations, to calibrate the relationship of the UV and global star formation rate in local galaxies. We will apply this calibration to distant galaxies discovered in the deep imaging and spectroscopic surveys to map the history of star formation in the universe over the redshift range 0 ! z ! and probe the physical drivers of star formation in galaxies. The GALEX mission includes a guest investigator 2 program, supporting the wide variety of programs made possible by the first UV sky survey.
The Cosmic Evolution Survey (COSMOS) is designed to probe the correlated evolution of galaxies, star formation, active galactic nuclei (AGNs), and dark matter (DM) with large-scale structure (LSS) over the redshift range z > 0:5Y 6. The survey includes multiwavelength imaging and spectroscopy from X-rayYtoYradio wavelengths covering a 2 deg 2 area, including HST imaging. Given the very high sensitivity and resolution of these data sets, COSMOS also provides unprecedented samples of objects at high redshift with greatly reduced cosmic variance, compared to earlier surveys. Here we provide a brief overview of the survey strategy, the characteristics of the major COSMOS data sets, and a summary the science goals.
We describe the calibration status and data products pertaining to the GR2 and GR3 data releases of the Galaxy Evolution Explorer (GALEX ). These releases have identical pipeline calibrations that are significantly improved over the GR1 data release. GALEX continues to survey the sky in the far-ultraviolet (FUV, $154 nm) and near-ultraviolet (NUV, $232 nm) bands, providing simultaneous imaging with a pair of photon-counting, microchannel plate, delay line readout detectors. These 1.25 field of view detectors are well suited to ultraviolet observations because of their excellent red rejection and negligible background. A dithered mode of observing and photon list output pose complex requirements on the data processing pipeline, entangling detector calibrations, and aspect reconstruction algorithms. Recent improvements have achieved photometric repeatability of 0.05 and 0.03 m AB in the FUV and NUV, respectively. We have detected a long-term drift of order 1% FUV and 6% NUVover the mission. Astrometric precision is of order 0.5 00 rms in both bands. In this paper we provide the GALEX user with a broad overview of the calibration issues likely to be confronted in the current release. Improvements are likely as the GALEX mission continues into an extended phase with a healthy instrument, no consumables, and increased opportunities for guest investigations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.