In India, about 3.77 million ha of the country's geographical area is affected by sodicity. There is an urgent need to minimize further land degradation and restore the fertility of degraded soils to meet the growing demand for food. The most effective way to overcome salt stress is by applying nutrients through soil and foliar. In this context, a field experiment was conducted at Anbil Dharmalingam Agricultural College and Research Institute (ADAC & RI), Tiruchirappalli, in the summer of 2022 to study the reclamation potential of soil amendments and foliar nutrition in sodic soil. The experiment was laid out in a split-plot design with three replications. The treatment comprised of soil amendments viz., M1- Pongamia green leaf manure (GLM) @ 6.25 t ha-1, M2- Pressmud @ 10 t ha-1, M3-CSR GROMOR @ 25 kg ha-1, M4-Gypsum @ 50 % GR, M5-Gypsum @ 50 % gypsum requirement (GR) + Pongamia GLM @ 6.25 t ha-1, M6-Gypsum @ 50 % GR + Pressmud @ 10 t ha-1, M7-Gypsum @ 50 % GR + CSR GROMOR @ 25 kg ha-1 and M8- Farmers practice, in main plots and foliar nutrition viz., S1- Foliar spray (FS) of CSR GROMOR @ 3% @ 30 DAS, S2-FS of Brassinosteroid (BRs) 0.2 ppm @ 30 DAS and S3-FS of Melatonin 60 ppm @ 30 DAS in sub plots. The results showed that gypsum @ 50 % GR + Pressmud @ 10 t ha-1+ FS of Brassinosteroid 0.2 ppm @ 30 DAS(M6S2) registered significantly (P=0.05%) lowest pH (8.07), ESP (11.62%), exchangeable Na+ (2.93 c mol (p+) kg-1) with higher exchangeable Ca2+(11.23 c mol (p+) kg-1), Mg2+ (8.09 c mol (p+) kg-1) and K+(0.82 c mol (p+) kg-1). It also increased soil available nutrients (235.6, 24.57 & 309.6 kg NPK ha-1) and grain yield (1110 kg ha-1) of green gram. However, it was on par with gypsum @ 50 % GR + CSR GROMOR @ 25 kg ha-1 + FS of Brassinosteroid 0.2 ppm @ 30 DAS(M7S2). Hence it was concluded that the application of gypsum along with pressmud or CSR GROMOR combined with FS of brassinostroid had a remarkable effect in reducing soil sodicity and increasing the productivity of green gram.
Food contamination is a critical problem that necessitates ongoing food pathogen control at every stage of the manufacturing process. In the food industry, it is critical to maintain product quality and safety. They can be accomplished in a variety of ways, some of which are more technologically advanced than others. The role, contribution, importance, and influence of ozone as a disinfectant used to regulate and eliminate the presence of unfavourable bacteria in food products, as well as to extend their shelf life and remove unwanted odours, are discussed in the study. Several researchers have studied the qualities and applications of ozone, demonstrating that ozone treatment technology may be used on a wide range of foods, including fruits, vegetables, spices, meat and seafood, and beverages. Besides food industry, ozone is also used in agriculture crop production in the way of soil application, foliar spraying and irrigation. A combination of such papers, as described in this review, can be helpful in determining acceptable ozone treatment parameters as well as factors affecting improved food quality and safety. It also includes a critical assessment of the benefits and drawbacks of ozone’s use in the food industry.
Green gram prefers neutral soil reactions and is sensitive to saline and alkaline soil conditions. Around 2.1 % of the country's geographical area is salt-affected, of which 3.77 million ha is sodic soil. Rehabilitation of salt-affected soil using drainage is expensive and leaching with good quality water is not feasible. To overcome this, a field experiment was conducted at Anbil Dharmalingam Agricultural College and Research Institute, Tiruchirappalli, during summer 2022 to study the effect of soil amendments and foliar nutrition under sodic soil. The experiment was laid out in a split-plot design with three replications. The treatments comprised of different varieties in main plots (M1, M2, M3, M4, M5 and M6) and different soil amendments with foliar application in sub plots (S1, S2 and S3). The results showed that VBN (Gg) 4 + gypsum @ 50 % GR + pressmud @ 10 t ha-1 + FS of brassinosteroid 0.2 ppm (M4S1) registered higher plant height (18.31, 31.52 & 60.63 cm), DMP (907, 1932 & 2969 kg ha-1), CGR (3.02, 6.83 & 4.15 g m-2 d-1) and SPAD value (37.56, 41.62 & 30.57) at 30, 45 DAS and harvest. The same treatments increased grain and haulm yield of 997 and 2232 kg ha-1. It also increased all agro-meteorological indices viz., GDD, HTU, PTU, RTD and HUE of green gram. However, comparable results were obtained with VBN (Gg) 4 + gypsum @ 50 % GR + CSR GROMOR @ 25 kg ha-1 + FS of brassinosteroid 0.2 ppm (M4S2).
Organic farming, which essentially excludes the use of synthetic pesticides and fertilizers, is becoming popular worldwide. The covid-19 pandemic has positively impacted on the market due to growing awareness towards the healthy and nutritional diets. As a result, demand for organic fruits and vegetables has increased over the world. Organic fruits and vegetables are in higher demand than ever before, owing to lower production and rising global consumption. However, due to the high cost of production, organic fruit and vegetable supply is limited in comparison to demand. Several experiments were conducted for comparing the organic and conventional fruits and vegetables quality. The results obtained from the studies showed Vitamins like ascorbic acid and beta carotene, Total polyphenols, dry matter accumulation, fiber content and Total Soluble Solids were higher in organic fruits and vegetables than conventional farming. Other mineral nutrient contents like Ca, Mg, K, Cu, Fe, Zn, PO4, SO4 were found similar both in organic and conventional farm produce. Cooking of organic vegetables at high temperatures is not preferable because it shows higher polyphenols losses during cooking than conventional produces. Heavy metals contamination, pesticide residues, ammonium and nitrate contents were lower in organic produce than conventional crops. Organic foods are better for the environment and more nutritious. It can be concluded that organic crops have a lower amount of contaminants, but a higher quality compared to conventional crops.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.