A description of MHD turbulence at low magnetic Reynolds number and large interaction parameter is proposed, in which attention is focussed on the role of insulating walls perpendicular to a uniform applied magnetic field. The flow is divided in two regions: the thin Hartmann layers near the walls, and the bulk of the flow. In the latter region, a kind of electromagnetic diffusion along the magnetic field lines (a degenerate form of Alfvén waves) is displayed, which elongates the turbulent eddies in the field direction, but is not sufficient to generate a two-dimensional dynamics. However the normal derivative of velocity must be zero (to leading order) at the boundaries of the bulk region (as at a free surface), so that when the length scale l⊥ perpendicular to the magnetic field is large enough, the corresponding eddies are necessarily two-dimensional. Furthermore, if l⊥ is not larger than a second limit, the Hartmann braking effect is negligible and the dynamics of these eddies is described by the ordinary Navier-Stokes equations without electromagnetic forces. MHD then appears to offer a means of achieving experiments on two-dimensional turbulence, and of deducing velocity and vorticity from measurements of electric field.
This paper presents a model for quasi two-dimensional MHD flows between two planes with small magnetic Reynolds number and constant transverse magnetic field orthogonal to the planes. A method is presented that allows to take 3D effects into account in a 2D equation of motion thanks to a model for the transverse velocity profile. The latter is obtained by using a double perturbation asymptotic development both in the core flow and in the Hartmann layers arising along the planes. A new model is thus built that describes inertial effects in these two regions. Two separate classes of phenomena are thus pointed out : the one related to inertial effects in the Hartmann layer gives a model for recirculating flows and the other introduces the possibility of having a transverse dependence of the velocity profile in the core flow. The "recirculating" velocity profile is then introduced in the transversally averaged equation of motion in order to provide an effective 2D equation of motion. Analytical solutions of this model are obtained for two experimental configurations : isolated vortices aroused by a point electrode and axisymmetric parallel layers occurring in the MATUR (MAgneticTURbulence) experiment. The theory is found to give a satisfactory agreement with the experiment so that it can be concluded that recirculating flows are actually responsible for both vortices core spreading and excessive dissipative behavior of the axisymmetric side wall layers. arXiv:2006.15468v1 [physics.flu-dyn]
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.