This paper presents the first case study of integration of reflectometry antennas and waveguides located at several poloidal angular positions covering a full poloidal section of the Helium Cooled Lithium Lead breading blanket. The integration shall satisfy strong machine driven constraints (in addition to the physics performance). Diagnostic components installed in the blanket segments must: i) survive for the all period between blanket replacement, ii) be remote handling (RH) compatible with blanket, iii) behave thermomechanical as the blanket structure, iv) cross with integrity the vacuum and reference boundaries (vessel/cryostat/building) and tolerate their relative displacements and v) be compatible with the blanket shielding and cooling services. The present solution developed so far respects several of the main constraints namely, RH compatibility with the full blanket segment and its thermomechanical properties and cooling compatibility but also identifies important issues on the interfaces between the diagnostic antennae extensions and the pipe services at the vessel and also interfaces between vessel and cryostat requiring challenging RH and self-alignment solutions to be demonstrated. Monte Carlo neutronic simulations have been done in order to evaluate the heat loads and shielding capabilities of the system. The first results indicate that the cooling for the EUROFER diagnostic components (antennas and waveguides) can in principle be provided by the blanket cooling services (He is considered) via connection to the main Back Supporting Structure (BSS) and routed via the main diagnostic structure body to specific hot spots in the antennas.
Small-scale farming can benefit from the usage of information and communication technology (ICT) to improve crop and soil management and increase yield. However, in order to introduce digital farming in rural areas, related ICT solutions must be viable, seamless and easy to use, since most farmers are not acquainted with technology. With that in mind, this paper proposes an Internet of Things (IoT) sensing platform that provides information on the state of the soil and surrounding environment in terms of pH, moisture, texture, colour, air temperature, and light. This platform is coupled with computer vision to further analyze and understand soil characteristics. Moreover, the platform hardware is housed in a specifically designed robust casing to allow easy assembly, transport, and protection from the deployment environment. To achieve requirements of usability and reproducibility, the architecture of the IoT sensing platform is based on low-cost, off-the-shelf hardware and software modularity, following a do-it-yourself approach and supporting further extension. In-lab validations of the platform were carried out to finetune its components, showing the platform’s potential for application in rural areas by introducing digital farming to small-scale farmers, and help them delivering better produce and increasing income.
This work involved human participants. Approval of all ethical and experimental procedures and protocols was granted by the Ethics Commission of Hospital CUF Infante Santo, and performed in line with the Declaration of Helsinki.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.