In the 2015 Paris Agreement, nations worldwide pledged emissions reductions (Nationally Determined Contributions—NDCs) to avert the threat of climate change, and agreed to periodically review these pledges to strengthen their level of ambition. Previous studies have analyzed NDCs largely in terms of their implied contribution to limit global warming, their implications on the energy sector or on mitigation costs. Nevertheless, a gap in the literature exists regarding the understanding of implications of the NDCs on countries’ Energy-Water-Land nexus resource systems. The present paper explores this angle within the regional context of Latin America by employing the Global Change Assessment Model, a state-of-the-art integrated assessment model capable of representing key system-wide interactions among nexus sectors and mitigation policies. By focusing on Brazil, Mexico, Argentina and Colombia, we stress potential implications on national-level water demands depending on countries’ strategies to enforce energy-related emissions reductions and their interplays with the land sector. Despite the differential implications of the Paris pledges on each country, increased water demands for crop and biomass irrigation and for electricity generation stand out as potential trade-offs that may emerge under the NDC policy. Hence, this study underscores the need of considering a nexus resource planning framework (known as “Nexus Approach”) in the forthcoming NDCs updating cycles as a mean to contribute toward sustainable development.
This study seeks to understand how Argentina's energy, water, and land (EWL) systems will coevolve under a representative array of human and earth system influences, including socioeconomic change, climate change, and climate policy. To capture Argentina's sub-national EWL dynamics in the context of global change, we couple the Global Change Analysis Model with a suite of consistent, gridded sectoral downscaling models to explore multiple stakeholder-engaged scenarios. Across scenarios, Argentina has the economic opportunity to use its vast land resources to satisfy growing domestic and international demand for crops, such as oil (e.g., soy) and biomass. The human (rather than earth) system produces the most dominant changes in mid-century EWL resource use. A Reference scenario characterized by modest socioeconomic growth projects a 40% increase in Argentina's agricultural production by 2050 (relative to 2020) by using 50,000 km 2 of additional cropland and 40% more water. A Climate Policy scenario designed to achieve net-zero carbon emissions globally shortly after mid-century projects that Argentina could use 100,000 km 2 of additional land (and 65% more water) to grow biomass and other crops. The burden of navigating these national opportunities and challenges could fall disproportionately on a subset of Argentina's river basins. The Colorado and Negro basins could experience moderate-to-severe water scarcity as they simultaneously navigate substantial irrigated crop demand growth and climate-induced declines in natural water availability. Argentina serves as a generalizable testbed to demonstrate that multi-scale EWL planning challenges can be identified and managed more effectively via integrated analysis of coupled human-earth systems.
Integrated energy-water-land (EWL) planning promotes synergies and avoids conflicts in ways that sector-specific planning approaches cannot. Many important decisions that influence emerging EWL nexus issues are implemented at regional (e.g., large river basin, electricity grid) and sub-regional (e.g., small river basin, irrigation district) scales. However, actual implementation of integrated planning at these scales has been limited. Simply collecting and visualizing data and interconnections across multiple sectors and sub-regions in a single modeling platform is a unique endeavor in many regions. This study introduces and applies a novel approach to linking together multiple sub-regions in a single platform to characterize and visualize EWL resource use, EWL system linkages within and among sub-regions, and the EWL nexus implications of future policies and investments. This integrated planning methodology is applied in the water-stressed Colorado River Basin in Argentina, which is facing increasing demands for agricultural and fossil fuel commodities. Guided by stakeholders, this study seeks to inform basin planning activities by characterizing and visualizing (1) the basin’s current state of EWL resources, (2) the linkages between sectors within and among basin sub-regions, and (3) the EWL nexus implications of planned future agricultural development activities. Results show that water scarcity, driven in part by human demands that have historically reached 60% of total surface water supply, poses a substantial constraint to economic development in the basin. The Colorado basin has the potential to serve as a testbed for crafting novel and generalizable sub-regional EWL planning approaches capable of informing the EWL planning dialogue globally.
Any dispute related to the use of the works of the IDB that cannot be settled amicably shall be submitted to arbitration pursuant to the UNCITRAL rules. The use of the IDB's name for any purpose other than for attribution, and the use of IDB's logo shall be subject to a separate written license agreement between the IDB and the user and is not authorized as part of this CC-IGO license. Following a peer review process, and with previous written consent by the Inter-American Development Bank (IDB), a revised version of this work may also be reproduced in any academic journal, including those indexed by the American Economic Association's EconLit, provided that the IDB is credited and that the author(s) receive no income from the publication. Therefore, the restriction to receive income from such publication shall only extend to the publication's author(s). With regard to such restriction, in case of any inconsistency between the Creative Commons IGO 3.0 Attribution-NonCommercial-NoDerivatives license and these statements, the latter shall prevail. Note that link provided above includes additional terms and conditions of the license.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.