The effect of explant type (immature vs. mature embryos) and two auxin types (2,4-dichlorophenoxyacetic acid vs. Dicamba) on the callogenesis and plant regeneration ability of 26 wheat cultivars was studied. In general, the callus induction, plant regeneration and shoot formation frequencies were higher in mature embryo-derived cultures as compared to immature ones on media originally developed for mature wheat embryo cultures. In both culture types, the auxin Dicamba was found to be more efficient, especially when mature embryos were cultured. The separation of means using Duncan’s multiple range test revealed the best in vitro response, in terms of the frequency of callus regeneration, in the cultivar Astella for both immature and mature embryo cultures. This cultivar gave very promising results, suggesting that it could be used in the future for further tissue culture investigations and as a donor material for genetic transformation experiments in wheat. Correlation analyses revealed significant similarities between the evaluated parameters within each group (immature and mature embryo-derived cultures). However, there were no significant correlations between these two groups for most of the parameters. This suggests that the mechanism of plant regeneration in the two in vitro regeneration systems (mature vs. immature embryo culture) may be different enough to hamper the development of an optimal plant regeneration protocol for use in both systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.