The objective of this study was to determine the distribution of enteric nerves and interstitial cells of Cajal (ICC) in the normal human appendix and in type 1 diabetes. Appendixes were collected from patients with type 1 diabetes and from non-diabetic controls. Volumes of nerves and ICC were determined using 3-D reconstruction and neuronal nitric oxide synthase (nNOS) expressing neurons were counted. Enteric ganglia were found in the myenteric plexus region and within the longitudinal muscle. ICC were found throughout the muscle layers. In diabetes, c-Kit positive ICC volumes were significantly reduced as were nNOS expressing neurons. In conclusion, we describe the distribution of ICC and enteric nerves in health and in diabetes. The data also suggest that the human appendix, a readily available source of human tissue, may be useful model for the study of motility disorders.
1. The glycosphingolipid compositions of the thymus and bursa of Fabricius of young male chickens were compared. The two tissues were found to contain complex mixtures of both neutral glycosphingolipids and gangliosides. Both tissues contained mono-, di-, tri-, tetra- and penta-glycosylceramides; the pentaglycosylceramide displayed a reaction of identity with authentic Forssman antigen when tested against a specific anti-(Forssman antigen) serum. The ganglioside G(m3) containing N-acetylneuraminic acid was the principle ganglioside of both tissues. 2. The thymus contained appreciable amounts of the simple ganglioside N-acetylneuraminylgalactosylceramide, a compound not found in the bursa. The ganglioside G(d3) (disialohaematoside) was detected in both tissues. 3. Rat and human thymus, like sheep thymus (Narasimhan, Hay, Greaves & Murray (1976) Biochim, Biophys. Acta 431, 578-591), both contained a tetraglycosylceramide species as their most complex neutral glycosphingolipid and possessed little or no Forssman antigen. They also contained a complex mixture of gangliosides. 4. The possible significance of these results is briefly discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.