Primary role of peroxidase enzyme is to decompose endogenous hydrogen peroxide, when oxygen radical is being replaced by a less potent radical, which is its cosubstrates oxidized form. During this study, catalytic activity of horseradish peroxidase has been observed in the presence of antioxidants from vitamin group, such as C, E and A, i.e. their water-soluble forms. It was found that vitamin E showed no effect on the enzyme activity and fate of cosubstrate radicals from the group of benzidine derivatives. Vitamin C proceeds enzymatic reaction showing its antioxidative character, and absorbs electrons from radicals, bringing cosubstrate back to its relaxed state. On the other hand, vitamin A plays a role of uncompetitive peroxidase inhibitor, which is visible through decreasing initial rate of catalytic reaction, and is reflected as virtual decrease of enzyme concentration. Furthermore, it prolongs life of endogenous hydrogen peroxide, which could potentially lead to oxidative stress of cells. This inhibitory effect can be used in analytical purpose, for determination of retinol acetate content in a sample
L-ascorbic acid is one of the essential nutrients and most common food supplements, fortificants, and preservatives. It is commercially available as solutions, drops, tablets, capsules, crystal powder, beverage mixtures, multivitamin formulations, and multi antioxidant formulations. The usual daily dose is from 25 mg to 1.5 g. Ascorbic acid is a distinctly reducing agent with low redox potential (0.18 and 0.08 V at pH 4.5 and 6.4, respectively). Based on ascorbate property, numerous methods for its quantitative determination are developed, from titrimetric, electrochemical, and chromatographic methods, to fluorometric and kinetic ones. Enzyme peroxidase is interfered with by ascorbic acid, which decreases the oxidation speed of its co-substrates during hydrogen peroxide decomposition by peroxidase. Absorbance changes at the wavelength of corresponding reagents are in correlation with ascorbate concentration. During this study, benzidine and o-tolidine have been used as chromogenic reagents. Reaction conditions were optimized for various buffer systems, calibration curves were constructed, and limits of detection (0.04 mmol/L) and quantification (0.12 mmol/L) were calculated. Using calibration charts, it was possible to detect ascorbic acid within limits from 0.4 to 10 mmol/L. The optimized method was applied for the determination of ascorbic acid in pharmaceutical products. The method was characterized by exceptional sensitivity and accuracy, but only for preparations not containing substances that affect enzyme peroxidase.
This paper deals with the resistance of twenty commercial winter wheat cultivars to common bunt causal agent (Tilletia tritici). Significant differences among the cultivars concerning the infection percent were observed, as well as the differences in the level of commercial cultivars' resistance to T. tritici. Most of the studied cultivars belonged to susceptible categories, and just few of them to the resistant ones. Cultivar Lasta was classified as highly resistant during the both investigation years in Kragujevac, while in Leposavić Lasta and Tiha were classified as resistant. The other studied cultivars were more or less susceptible
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.