Sweetpotato [Ipomoea batatas (L.) Lam.] is a globally important staple food crop, especially for sub-Saharan Africa. Agronomic improvement of sweetpotato has lagged behind other major food crops due to a lack of genomic and genetic resources and inherent challenges in breeding a heterozygous, clonally propagated polyploid. Here, we report the genome sequences of its two diploid relatives, I. trifida and I. triloba, and show that these high-quality genome assemblies are robust references for hexaploid sweetpotato. Comparative and phylogenetic analyses reveal insights into the ancient whole-genome triplication history of Ipomoea and evolutionary relationships within the Batatas complex. Using resequencing data from 16 genotypes widely used in African breeding programs, genes and alleles associated with carotenoid biosynthesis in storage roots are identified, which may enable efficient breeding of varieties with high provitamin A content. These resources will facilitate genome-enabled breeding in this important food security crop.
Orange-fleshed sweetpotato (OFSP) is a rich plant-based source of beta-carotene, which the body converts into vitamin A. In sub-Saharan Africa, sweetpotato is known as a food security crop but most varieties grown are high dry matter white-fleshed types, lacking beta-carotene. In 1995, researchers recognized the potential of OFSP varieties to address widespread vitamin A deficiency in SSA using an integrated agriculture-nutrition approach. With their partners, they confronted conventional wisdom concerning food-based approaches and institutional barriers, to build the evidence base and breed 42 OFSP varieties adapted to farmer needs and consumer preferences. Subsequently, a multi-partner, multi-donor initiative, launched in 2009, has already reached 2.8 million households. This review summarizes that effort describing how the changing policy environment influenced the process.
Sweet potato virus disease (SPVD) is the name used to describe a range of severe symptoms in different cultivars of sweet potato, comprising overall plant stunting combined with leaf narrowing and distortion, and chlorosis, mosaic or vein-clearing. Affected plants of various cultivars were collected from several regions of Uganda. All samples contained the aphid-borne sweet potato feathery mottle potyvirus (SPFMV) and almost all contained the whiteflyborne sweet potato chlorotic stunt closterovirus (SPCSV). SPCSV was detected by a mix of monoclonal antibodies (MAb) previously shown to react only to a Kenyan isolate of SPCSV, but not by a mixture of MAb that detected SPCSV isolates from Nigeria and other countries. Sweet potato chlorotic fleck virus (SPCFV) and sweet potato mild mottle ipomovirus (SPMMV) were seldom detected in SPVD-affected plants, while sweet potato latent virus (SPLV) was never detected. Isolates of SPFMV and SPCSV obtained by insect transmissions together induced typical symptoms of SPVD when graft-inoculated to virus-free sweet potato. SPCSV alone caused stunting and either purpling or yellowing of middle and lower leaves when graft-inoculated to virus-free plants of two cultivars. Similarly diseased naturally inoculated field plants were shown consistently to contain SPCSV. Both this disease and SPVD spread rapidly in a sweet potato crop.
This review of the literature on varietal change in sub-Saharan Africa looks in detail at adoption of new varieties of bananas in Uganda, cassava in Nigeria, potato in Kenya, sweetpotato in Uganda and yams in Côte d'Ivoire. The review explored three hypotheses about drivers of varietal change. There was a strong confirmation for the hypothesis that insufficient priority given to consumer-preferred traits by breeding programmes contributes to the limited uptake of modern varieties (MVs) and low varietal turnover. Lack of evidence meant the second hypothesis of insufficient attention to understanding and responding to gender differences in consumer preferences for quality and post-harvest traits was unresolved. The evidence on the third hypothesis about the informal seed system contributing to slow uptake of MVs was mixed. In some cases, the informal system has contributed to rapid uptake of MVs, but often it appears to be a barrier with inconsistent varietal naming a major challenge.
Sweetpotato, with a global annual planting area of approximately 9 million ha, is the second most important tropical root crop. It is widely adapted, being grown in more than 110 countries. Early maturing varieties grow in 3-4 months. It is hardy and has multiple uses. Both roots and foliage are edible and provide energy and nutrients in diets. Distinct quality types have different uses, with orange-fleshed sweetpotato being valued for its extremely high provitamin A content, and other types used in varied fresh and processed forms. Sweetpotato is easily bred, as true seed is easily obtained and generation cycles are short. There are five objectives of this review. The first objective is to briefly describe recent production and utilization trends by region; the second is to review knowledge about the origin and genetic nature of sweetpotato; the third is to review selected breeding objectives. The fourth objective is to review advances in understanding of breeding methods, including: (i) generation of seed through polycross nurseries and controlled cross breeding; (ii) a description of a new accelerated breeding approach; (iii) recent efforts to systematically exploit heterosis; and (iv) new approaches of genomic selection. The fifth objective is to provide information about variety releases during the past 20 years in West, East and Southern Africa, South Asia, East and South-east Asia, China and the Pacific.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.