The classification of the legume family proposed here addresses the long‐known non‐monophyly of the traditionally recognised subfamily Caesalpinioideae, by recognising six robustly supported monophyletic subfamilies. This new classification uses as its framework the most comprehensive phylogenetic analyses of legumes to date, based on plastid matK gene sequences, and including near‐complete sampling of genera (698 of the currently recognised 765 genera) and ca. 20% (3696) of known species. The matK gene region has been the most widely sequenced across the legumes, and in most legume lineages, this gene region is sufficiently variable to yield well‐supported clades. This analysis resolves the same major clades as in other phylogenies of whole plastid and nuclear gene sets (with much sparser taxon sampling). Our analysis improves upon previous studies that have used large phylogenies of the Leguminosae for addressing evolutionary questions, because it maximises generic sampling and provides a phylogenetic tree that is based on a fully curated set of sequences that are vouchered and taxonomically validated. The phylogenetic trees obtained and the underlying data are available to browse and download, facilitating subsequent analyses that require evolutionary trees. Here we propose a new community‐endorsed classification of the family that reflects the phylogenetic structure that is consistently resolved and recognises six subfamilies in Leguminosae: a recircumscribed Caesalpinioideae DC., Cercidoideae Legume Phylogeny Working Group (stat. nov.), Detarioideae Burmeist., Dialioideae Legume Phylogeny Working Group (stat. nov.), Duparquetioideae Legume Phylogeny Working Group (stat. nov.), and Papilionoideae DC. The traditionally recognised subfamily Mimosoideae is a distinct clade nested within the recircumscribed Caesalpinioideae and is referred to informally as the mimosoid clade pending a forthcoming formal tribal and/or clade‐based classification of the new Caesalpinioideae. We provide a key for subfamily identification, descriptions with diagnostic charactertistics for the subfamilies, figures illustrating their floral and fruit diversity, and lists of genera by subfamily. This new classification of Leguminosae represents a consensus view of the international legume systematics community; it invokes both compromise and practicality of use.
Abstract. For much of the last thirty years, the caesalpinioid genus Bauhinia has been recognised by numerous authors as a broadly circumscribed, ecologically, morphologically and palynologically diverse pantropical taxon, comprising several subgenera. One of these, Bauhinia subg. Phanera has recently been reinstated at generic rank based on a synthesis of morphological and molecular data. Nevertheless, there remains considerable diversity within Phanera. Following a review of palynological and molecular studies of Phanera in conjunction with a careful re-examination of the morphological heterogeneity within the genus, we have found strong evidence that the species of Phanera subsect. Corymbosae are a natural group that warrant generic status. We describe here the genus Cheniella R.Clark & Mackinder gen. nov. to accommodate them. It comprises 10 species and 3 subspecies, one newly described here. Generic characters include leaves that are simple and emarginate or bilobed; flowers with elongate hypanthia which are as long as or much longer than the sepals; pods that are glabrous, compressed, oblong, indehiscent or tardily dehiscent; and with numerous seeds, the seeds bearing an unusually long funicle extending most of the way around their circumference. A further distinctive floral character was found to be a fleshy disc on which the staminodes are mounted. An analysis carried out for this study reveals Cheniella to be characterised by a pollen type that is unique to the genus and previously unknown in the Leguminosae. Species diversity is richest in southern China, the full distribution extending westward to India and south-and eastward through Indochina into Malesia.
Historically, many authors of regional accounts of the Leguminosae (Fabaceae) tribe Cercideae divided the caesalpinioid genus Bauhinia sens. lat. into several segregate genera including the genus Phanera. However, during the last fifty years, Bauhinia has more often been recognised as a broadly circumscribed taxon with Phanera reduced to a subgenus of Bauhinia sens. lat. The reinstatement of Phanera at generic rank based on molecular and morphological evidence has now been widely accepted, resulting in the need for new combinations in Phanera for many taxa described in Bauhinia. Some of those names have been published recently by other authors so here we make the necessary combinations for those taxa still lacking names in Phanera. In addition, we include all published Phanera binomials and trinomials here and to each assign a status of accepted name, synonym or excluded name. The recent reinstatement of the New World genus Schnella to which c. 40 Phanera species were moved transforms Phanera into a strictly Asian and Australasian taxon. Phanera can be distinguished from Bauhinia sens. str. and from Schnella by a combination of morphological characters, but the morphological boundary with another closely related Asiatic genus, Lasiobema is unclear and warrants further investigation. We present a table comparing morphological characters of Phanera, Schnella, Lasiobema and Bauhinia sens. str.
The genus Bauhinia sens. lat. formerly accommodated numerous species that have now been transferred to one of several segregate genera. One of those genera, Schnella, includes all neotropical liana species with tendrils. This study comprises a summary of the taxonomic and nomenclatural history of Schnella, and presents a list of names accepted under Schnella, including 12 new combinations. We recognise here a total of 53 taxa including 47 species. Distribution details for each taxon are given, illustrated with a map showing numbers of taxa within the TDWG regions of the neotropics. Within Schnella, there exist two morphologically and palynologically distinguishable groups of species. Further work, including a molecular-based study, will be needed to discover whether those two species groups are congeneric.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.