A hypothesis has been proposed by this laboratory that endogenous gut-derived lipopolysaccharide is responsible for systemic endotoxemia in animals with acute liver injury particularly after partial (67%) hepatectomy. Systemic lipopolysaccharide and possibly fibrin aggregates or tissue debris then elicit release of cytokines from phagocytizing macrophages and/or monocytes that may be essential for normal liver regeneration. To test this hypothesis liver regeneration was assessed in germ-free euthymic mice that lack the gram-negative bacterial source of lipopolysaccharide, as well as being deficient in lymphoid tissue and relatively resistant to endotoxin. To complement the germ-free animals, conventional athymic nude BALB/c mice and conventional lipopolysaccharide-resistant C3H/HeJ mice were also examined. Liver regeneration, quantified by [3H] thymidine incorporation into hepatic DNA after partial hepatectomy was performed on mice anesthetized with ether, was significantly depressed in germ-free euthymic and conventional athymic BALB/c mice and delayed in conventional lipopolysaccharide-resistant C3H/HeJ mice, as compared with conventional control BALB/c and C3H/HeN animals. Pretreatment of conventional euthymic control mice with lipopolysaccharide 24 hr before surgery significantly stimulated hepatic DNA synthesis after 67% liver resection. Germ-free euthymic, conventional athymic, and conventional lipopolysaccharide-resistant mice pretreated with endotoxin did not manifest significant stimulation of liver regeneration. Evidence is reviewed that cytokine release in response to endotoxin was depressed in germ-free euthymic, conventional athymic, and conventional lipopolysaccharide-resistant mice as compared with conventional euthymic controls.(ABSTRACT TRUNCATED AT 250 WORDS)
The influence of exogenous endotoxin pretreatment on liver regeneration after partial hepatectomy was evaluated. Partial hepatectomy was performed by 67% liver resection of ether-anesthetized rats with midline laparotomy and liver manipulation as the sham control. Animals were pretreated with endotoxin at a dose of 33 micrograms/100 g sc or iv 24 h before surgery and then fasted. Liver regeneration was quantified after partial hepatectomy by [3H]thymidine incorporation into hepatic DNA, and plasma levels of hepatotrophic factors were measured by radioimmunoassay or radioreceptor assay. Systemic endotoxemia occurred after exogenous endotoxin administration as well as after partial hepatectomy due to absorption of exogenous endotoxin from the gut into the portal circulation as determined by quantitative chromogenic lysate assay of perchloric acid-extracted plasma samples. Alterations in putative hepatotrophic factors, including insulin, glucagon, epidermal growth factor, vasopressin, and triiodothyronine, were remarkable similar in response to endotoxemia by exogenous endotoxin administration and by endogenous endotoxin absorption from the gut after partial hepatectomy. Our hypothesis purports that gut-derived systemic endotoxemia elicits hepatotrophic factor secretion for liver regeneration after partial hepatectomy and that endotoxin pretreatment expedites the hepatotrophic factor response, thus accelerating DNA synthesis in the proliferating liver after 67% resection.
The influence of restricting gut-derived endotoxin availability on liver regeneration after partial hepatectomy was evaluated. Partial hepatectomy was performed by 67% liver resection of ether-anesthetized rats. Liver regeneration was quantified after partial hepatectomy by [3H]thymidine incorporation into hepatic DNA; endotoxemia due to absorption of endogenous endotoxin from the gut into the portal circulation was determined by qualitative lysate assay of perchloric acid-extracted plasma samples, and plasma levels of the hepatotrophic factors insulin and glucagon were measured by radioimmunoassay. Treatments to restrict gut-derived endotoxin included chronic gavage with neomycin and cefazolin for gut sterilization, chronic gavage with cholestyramine to bind endotoxin within the gut, subcutaneous administration of polymyxin B to neutralize the lipid A portion of circulating endotoxin, intraperitoneal induction of endotoxin tolerance by progressively higher doses of endotoxin, and experimentation with isolator-reared defined flora Fisher rats that were Gram-negative bacteria deficient and therefore endotoxin deficient. All treatments to restrict endogenous endotoxin impaired DNA synthesis in regenerating livers particularly 21 h posthepatectomy when replication was increasing most rapidly in normal rats. We hypothesize that impairment of DNA synthesis after partial hepatectomy in endotoxin-restricted animals was due to the observed lack of normal systemic endotoxemic as well as hyperinsulinemic and hyperglucagonemic responses to 67% liver resection.
This laboratory has proposed that endogenous gut-derived bacterial endotoxin primes the pancreatic secretion of insulin in normal rats. Endogenous lipopolysaccharide (LPS) is continually absorbed from the gut into intestinal capillaries, and low-grade portal venous endotoxemia is the status quo. Under physiologic conditions, Kupffer cells of the liver totally phagocytize and degrade endotoxin from the portal circulation. Evidence from this and other laboratories indicates that administration of exogenous LPS to humans and rats enhances pancreatic secretion of both insulin and glucagon. Conversely, findings of the present study demonstrate that restriction of endogenous LPS in fasted rats depresses the basal and arginine-stimulated concentrations of plasma insulin. Techniques used to restrict gut-derived LPS availability included chronic daily gavage with neomycin and cefazolin for gut sterilization and with cholestyramine or lactulose to reduce endotoxin within the gut. In addition, induction of endotoxin tolerance was produced by progressively higher doses of LPS intraperitoneally (i.p.), and polymyxin B was administered subcutaneously (s.c.) daily to neutralize the lipid A portion of circulating LPS. Finally, isolator-reared, defined flora rats, which were gram-negative-bacteria-deficient, and, therefore, LPS-deficient, were compared with conventional counterparts. Basal plasma insulin but not glucagon levels were consistently and significantly reduced in endogenous LPS-restricted animals. Glucose-stimulated plasma insulin was decreased only after parenteral treatment by tolerance induction and polymyxin B administration. Both plasma insulin and glucagon were depressed in response to arginine challenge in most LPS-restricted rats.(ABSTRACT TRUNCATED AT 250 WORDS)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.