No abstract
Experiments and simulations were carried out in this investigation of turbulent subcooled boiling flow of Refrigerant-113 through a vertical annular channel whose inner wall only was heated. The measurements used, simultaneously, a two-component laser Doppler velocimeter for the liquid velocity field and a fast-response cold-wire for the temperature field, and a dual-sensor fiberoptic probe for the vapor fraction and vapor axial velocity. In the numerical simulation, the two-fluid model equations were solved by the solver ASTRID developed at Electricite´ de France. Wall laws for the liquid phase time-average axial velocity and temperature were developed from the experimental data, and the turbulent Prandtl number in the liquid was determined from the wall laws. The wall laws and turbulent Prandtl number were used in the simulations. The wall heat transfer model utilized the measured turbulent heat flux distribution in the liquid. Results from the simulations were compared with the measurements. Good agreement was found for some of the quantities while the agreement was only fair for others.
It has been suggested by researchers that ingestion, through rim seals, of mainstream gas into axial-flow turbine disk cavities is a consequence of the prevailing unsteady three-dimensional flow field. The cause–effect relationship is complex—to help understand it, experiments were performed in a model single-stage turbine rig using two different vane-blade configurations. Selected measurements from one of the configurations were reported earlier (1999–2001). The second configuration is new, featuring smaller numbers of vanes and blades and a larger vane turning angle. Selected measurements are presented and compared to those from the first configuration. The measurements include unsteady and rotor revolution time-average static pressure spatial distributions, and spatial distribution, in the rotor-stator cavity, of time-average ingestion. The parameters in the experiments were the main airflow rate, the purge/seal airflow rate, and the rotor speed. Unsteady three-dimensional CFD simulation may be helpful in identifying the roles of the many intertwined phenomena in the ingestion process.
Experiments were carried out in a model air turbine stage to study the influence of rotor-stator rim cavity configuration on the ingestion of mainstream gas into the cavity. The three rim cavity configurations differed in their aspect ratio (height/width); the rim seal geometry remained the same. The aspect ratio was changed from the baseline ratio by installing an inner shell on the stator at an appropriate radius; this effectively introduced an axial-gap seal between the rim cavity and the cavity radially inboard. The initial step in each experiment was the measurement of time-average static pressure distribution in the turbine stage to ascertain that proper flow condition had been established. Subsequently, tracer gas concentration and particle image velocimetry techniques were employed to measure the time-average but spatially local main gas ingestion and the instantaneous velocity field in the rim cavity. At low purge air flow, regions of ingestion and egress could be identified by inspecting the instantaneous radial velocity distribution near the rim seal obtained from cavity gas velocity maps close to the stator. While the tangential velocity tended to be slightly larger for the so determined ingested gas, a more clear-cut indicator of ingestion was the strong inward gas radial velocity. Information provided by ensemble-average velocity maps was not sufficient for identifying ingestion because the averaging smeared out flow details, which varied from instant to instant. Velocity fields obtained from three-dimensional, time-dependent numerical simulation of a rim seal-cavity sector with similar dimensions qualitatively showed similar characteristics in the outer part of the cavity and provided insight into the complex flow in the seal region.
Local measurements of vapor phase residence time fraction, vapor bubble size distribution, bubble axial velocity, and vapor and liquid temperatures were performed in turbulent boiling flow of Refrigerant-113. The dissolved air content of the experimental fluid was minimized. Data are reported for three wall heat fluxes, two fluid mass velocities, and three subcoolings at test section inlet. Local time-averaged interfacial area concentrations were estimated. The measuring devices, viz., dual-sensor fiber-optic probe for the vapor bubble measurements and phase-compensated chromel-alumel microthermocouple for the fluid temperature measurement, provided more complete and accurate data compared with our earlier work. The data should be helpful in the development and validation of multidimensional turbulent boiling flow models. Further work is needed, however, before the local interfacial area concentration can be determined with confidence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.