Mosquitoes (Diptera: Culicidae) are a key threat for millions of people worldwide, since they act as vectors for devastating pathogens and parasites. The standard method of utilisation of morphological characters becomes challenging due to various factors such as phenotypical variations. We explored the complementary approach of CO1 gene-based identification, analysing ten species of mosquito vectors belonging to three genera, Aedes, Culex and Anopheles from India. Analysed nucleotide sequences were found without pseudo genes and indels; they match with high similarity in nucleotide Basic Local Alignment Search Tool (BLASTn) search. The partial CO1 sequence of Anopheles niligricus was the first time record submitted to National Center for Biotechnology Information (NCBI). Mean intra- and interspecies divergence was found to be 1.30 and 3.83 %, respectively. The congeneric divergence was three times higher than the conspecifics. Deep intraspecific divergence was noted in three of the species, and the reason could be explained more accurately in the future by improving the sample size across different locations. The transitional and transversional substitutions were tested individually. Ts and Tv substitutions in all the 1st, 2nd and 3rd codons were estimated to be (0.44, 99.51), (40.35, 59.66) and (59.16, 40.84), respectively. Saturation of the sequences was resolved, since both the Ts and Tv exhibited a linear relationship suggesting that the sequences were not saturated. NJ and ML tree analysis showed that the individuals of the same species clustered together based on the CO1 sequence similarity, regardless of their collection site and geographic location. Overall, this study adds basic knowledge to molecular evolution of mosquito vectors of medical and veterinary importance and may be useful to improve biotechnological tools employed in Culicidae control programmes.
A 4-yr (2002-2006) entomological study was carried out in Kurnool district, Andhra Pradesh state, south India, to identify the mosquito vectors of Japanese encephalitis virus (family Flaviviridae, genus Flavivirus, JEV). In total, 37,139 female mosquitoes belonging five genera and 18 species resting on vegetation were collected in villages and periurban areas at dusk. Mosquito species composition and pattern of JEV infection in mosquitoes varied in periurban and rural areas. In periurban area, Culex gelidus Theobald was abundant, making up 49.7% of total catch followed by Culex tritaeniorhynchus Giles (44.5%). In rural area, Cx. tritaeniorhynchus was predominant, making up 78.9% of total catch followed by Culex quinquefasciatus Say (10.8%), Anopheles subpictus Grassi (7.1%), and Cx. gelidus (1.1%). In light trap collections, Cx. gelidus and Cx. tritaeniorhynchus predominated in periurban and rural areas, respectively. Of 50,145 mosquitoes screened JEV isolations were made only from Cx. gelidus and Cx. tritaeniorhynchus. Based on high abundance and frequent JEV isolation, Cx. tritaeniorhynchus was found to be the principal vector in both areas, whereas Cx. gelidus plays a secondary vector role in periurban areas only.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.