This paper addresses an integrated circuit (IC) modeling procedure for mixed-signal immunity simulations of communication networks. The procedure is based on a gray-box approach, modeling (IC) ports with a physical circuit and the internal links with a behavioral block. The parameters are estimated from time and frequency domain measurements, allowing accurate and efficient reproduction of nonlinear device switching behaviors. The effectiveness of the modeling process is verified by applying the proposed technique to a controller area network (CAN)
transceiver, involved in a direct power injection (DPI) immunity test on a data communication link. The obtained model is successfully implemented in a VHDL-analog mixed-signal (AMS) solver to predict both the functional signals and the RF noise immunity at component level.Index Terms-CAN transceiver, conducted susceptibility, controller area network (CAN), electromagnetic compatibility (EMC), mixed-signal integrated circuit, RF noise immunity, signal integrity, VHDL-analog mixed-signal (AMS).
0018-9375
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.