Abstract. The last decades llave been characterized by a fast evolution of cars. This work shows the evolution of vehicle weight. It sI10ws the response of car manufacturers using new materials and production meUlods that allow lighter vehicles with lower consumption, cheaper and with 1000ver influence 011 the greenhouse effect. One of the materials which means a most interesting change is the TWIP steel. This material is characterized by its high strengUl, his exceptional strain and excellent formabílily as weH as lower energy consumption in Uleir manufacture. TWIP steel are changing to\vards cheaper compositions and higber perfonl1ance, and it's going to be great influence in the vehicle weight reduction in tbe next years.
The rapid evolution of materials and manufacturing processes, driven by global competition and new safety and environmental regulations has had an impact on automotive structures (Body In White; BIW) manufacturing. The need for lighter vehicles, with more equipment, that are safer and eco-friendly at the same time, relates to the entire life cycle of the car. Car and steelmakers agree that weight reduction is possible, and the solution involves the use of new advanced high-strength steels. Thinner and stronger materials lead to higher demands on stamping, the most used manufacturing in BIW parts. The use of advanced high-strength steels raises new challenges, especially concerning the lubrication between the die and the sheet. To study the lubrication conditions of the stamping process, a sheet metal forming a simulator was developed. The simulator consists of two cylinders that pull the strip of steel and a pin in between. The angle between the cylinders can be adjusted from 0 to 90 degrees, which allows analysis of the effect of the stamping angle. The pull force and velocity can be set and measured, and the peripheric pin velocity, the strain, and the strain velocity can be measured as well. In this work, the tribological properties of Dual-Phase 600 stainless steel using different processing conditions have been analyzed. To this end, a factorial experiments design with twelve parameters that compare the behavior of different angles and diameters was run. The results showed that the friction coefficient increases by increasing the bending angle and decreases with pin diameter.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.