Environmental temperature is one of the important abiotic factors that influence the normal physiological function and productive performance of dairy cattle. Temperature stress evokes complex responses that are essential for safeguarding of cellular integrity and animal health. Post-transcriptional regulation of gene expression by miRNA plays a key role cellular stress responses. The present study investigated the differential expression of miRNA in Frieswal (Holstein Friesian × Sahiwal) crossbred dairy cattle that are distinctly adapted to environmental temperature stress as they were evolved by using the temperate dairy breed Holstein Friesian. The results indicated that there was a significant variation in the physiological and biochemical indicators estimated under summer stress. The differential expression of miRNA was observed under heat stress when compared to the normal winter season. Out of the total 420 miRNAs, 65 were differentially expressed during peak summer temperatures. Most of these miRNAs were found to target heat shock responsive genes especially members of heat shock protein (HSP) family, and network analysis revealed most of them having stress-mediated effects on signaling mechanisms. Being greater in their expression profile during peak summer, bta-miR-2898 was chosen for reporter assay to identify its effect on the target HSPB8 (heat shock protein 22) gene in stressed bovine PBMC cell cultured model. Comprehensive understanding of the biological regulation of stress responsive mechanism is critical for developing approaches to reduce the production losses due to environmental heat stress in dairy cattle.
Loop-mediated isothermal amplification (LAMP) is a diagnostic method for amplification of DNA with rapid and minimal equipment requirement. In the present study, we applied the LAMP assay for rapid detection of cow components adulteration in buffalo milk/meat samples. The test can be completed within around 1 h 40 min starting from DNA extraction and can be performed in water bath without requirement of thermocycler. The cow DNA in buffalo samples were identified in the developed LAMP assay by either visualizing with SYBR Green I/HNB dyes or observing the typical ladder pattern on gel electrophoresis. The test can detect up to 5 % level of cow milk/meat mixed in buffalo counterparts. Due to the simplicity and specificity, the developed LAMP test can be easily adapted in any laboratory for rapid detection of cow species identification in livestock by products.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.