Ideally, implants should inhibit nonspecific protein adsorption, bacterial adhesion, and at the same time, depending on the final application be selective toward cellular adhesion and spreading for all or only selected cell types. Poly(L-lysine)-grafted-poly(ethylene glycol) (PLL-g-PEG) polymers have been shown to adsorb from aqueous solution onto negatively charged metal oxide surfaces, reducing protein adsorption as well as fibroblast, osteoblast and epithelial cell adhesion significantly. PLL-g-PEG can be functionalized with bioligands such as RGD (Arg-Gly-Asp), which then restores host cell adhesion, but the surface remains resistant to nonspecific protein adsorption. Previously, it was also shown that both nonfunctionalized PLL-g-PEG and RGD-peptide functionalized PLL-g-PEG reduced the adhesion of Staphylococcus aureus to titanium (Ti) surfaces. The present study looked at the effect of other implant associated infection relevant bacteria, Staphylococcus epidermidis, Streptococcus mutans and Pseudomonas aeruginosa towards the same surface chemistries. The different surfaces were exposed to the bacteria for 1-24 h, and bacteria surface density was evaluated using scanning electron microscopy (SEM) and fluorescence light microscopy (FM). The adhesion of all bacteria strains tested was reduced on Ti surfaces coated with PLL-g-PEG compared to uncoated Ti surfaces even in the presence of RGD. The percentage reduction in bacterial adhesion over the 24-h culture time investigated was 88%-98%, depending on the bacteria type. Therefore, coating surfaces with PLL-g-PEG/PEG-RGD allows cells such as fibroblasts and osteoblasts to attach but not bacteria, resulting in a selective biointeractive pattern that may be useful on medical implants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.