In the present study, we have utilized X-ray photoelectron spectroscopy (XPS), spectroscopic ellipsometry (ELM), and optical waveguide lightmode spectroscopy (OWLS) to examine the surface adsorption and protein resistance behavior of bio-inspired polymers consisting of poly(ethylene glycol) (PEG) conjugated to peptide mimics of mussel adhesive proteins. Peptides containing up to three residues of 3,4-dihydroxyphenylalanine (DOPA), a key component of mussel adhesive proteins, were conjugated to monomethoxy-terminated PEG polymers. These mPEG-DOPA polymers were found to be highly adhesive to TiO2 surfaces, with quantitative XPS analysis providing useful insight into the binding mechanism. Additionally, the antifouling properties of immobilized PEG were reflected in the excellent resistance of mPEG-DOPA-modified TiO2 surfaces to protein adsorption. Measurements of mPEG-DOPA and human serum adsorption were related in terms of ethylene glycol (EG) surface density and serum mass adsorbed and demonstrated a threshold of approximately 15-20 EG/nm2, above which substantially little protein adsorbs. With respect to surface density of adsorbed PEG and the associated nonfouling behavior of the adlayers, strong parallels exist between the nonfouling properties of the surface-bound mPEG-DOPA polymers and PEG polymers immobilized to surfaces using other approaches. Peptide anchors containing three DOPA residues resulted in PEG surface densities higher than those achieved using several existing PEG immobilization strategies, suggesting that peptide mimics of mussel adhesive proteins may be useful for achieving high densities of protein-resistant polymers on surfaces.
A series of alkyl phosphates with alkyl chain lengths ranging from C10 to C18 have been synthesized. Self-assembled monolayers (SAMs) of these molecules were prepared on titanium oxide surfaces by immersion of the substrates in alkyl phosphate solutions of 0.5 mM concentration in n-heptane/isopropanol. The SAMs were characterized by means of dynamic water contact angle (dCA) measurements, variable-angle spectroscopic ellipsometry (VASE), X-ray photoelectron spectroscopy (XPS), and polarization-modulated infrared reflection-absorption spectroscopy (PM-IRRAS). A higher degree of order and packing density within the monolayers was found for alkyl phosphates with alkyl chain lengths exceeding 15 carbon atoms. This is reflected in a lower dCA hysteresis, as well as a film thickness measured by VASE and XPS close to the expected values for SAMs with an average alkyl chain tilt angle of 30 degrees to the surface normal. Additionally a shift of the symmetric and antisymmetric C-H stretching modes in the PM-IRRAS spectra to lower wave numbers was observed. These findings imply a higher two-dimensional crystallinity of the films derived from alkyl phosphates with a longer alkyl chain length.
Dodecyl phosphate and hydroxy-terminated dodecyl phosphate are shown to spontaneously assemble on smooth titanium oxide and titanium metal coated glass and silicon substrates, as well as on rough titanium metal implant surfaces. The surfaces were dipped in aqueous solutions of the corresponding ammonium salts for 48 h. The molecules are shown by X-ray photoelectron spectroscopy (XPS) to form densely packed, self-assembled monolayers (SAMs) on all surfaces investigated. The phosphate headgroups are believed to attach to the titanium (oxide) surface with the terminal end group (either methyl or hydroxy) pointing toward the ambient environment (air, vacuum, or water). Mixed SAMs are shown to be formed from mixed aqueous solutions of the two amphiphiles, with the hydroxy-terminated dodecyl phosphate adsorbing more favorably than the methyl-terminated molecule. The advancing water contact angles can be easily tailored via the composition of the self-assembly solution in the range of 110° (pure methyl) to 55° (pure hydroxy) on flat, smooth titanium surfaces. Surface roughness strongly modifies the wetting properties, with advancing contact angles in the range of 150−100° being observed, as well as the degree of hysteresis (difference between advancing and receding angles). Model calculations based on XPS intensities have been successfully used to quantify the adlayer composition and molecular surface densities across the whole range of mixed adlayer chemistry. The organophosphate monolayers on titanium are believed to have a significant potential for precise control of the surface chemistry and interfacial tension on both smooth and rough titanium surfaces in application areas such as medical implants and other devices where independent control of surface chemistry and topography is essential to performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.