The accessibility of a huge amount of protein-protein interaction (PPI) data has allowed to do research on biological networks that reveal the structure of a protein complex, pathways and its cellular organization. A key demand in computational biology is to recognize the modular structure of such biological networks. The detection of protein complexes from the PPI network, is one of the most challenging and significant problems in the post-genomic era. In Bioinformatics, the frequently employed approach for clustering the networks is Markov Clustering (MCL). Many of the researches for protein complex detection were done on the static PPI network, which suffers from a few drawbacks. To resolve this problem, this paper proposes an approach to detect the dynamic protein complexes through Markov Clustering based on Elephant Herd Optimization Approach (DMCL-EHO). Initially, the proposed method divides the PPI network into a set of dynamic subnetworks under various time points by combining the gene expression data and secondly, it employs the clustering analysis on every subnetwork using the MCL along with Elephant Herd Optimization approach. The experimental analysis was employed on different PPI network datasets and the proposed method surpasses various existing approaches in terms of accuracy measures. This paper identifies the common protein complexes that are expressively enriched in gold-standard datasets and also the pathway annotations of the detected protein complexes using the KEGG database.
Real-world problems such as scientific, engineering, mechanical, etc., are multi-objective optimization problems. In order to achieve an optimum solution to such problems, multi-objective optimization algorithms are used. A solution to a multi-objective problem is to explore a set of candidate solutions, each of which satisfies the required objective without any other solution dominating it. In this paper, a population-based metaheuristic algorithm called an artificial electric field algorithm (AEFA) is proposed to deal with multi-objective optimization problems. The proposed algorithm utilizes the concepts of strength Pareto for fitness assignment and the fine-grained elitism selection mechanism to maintain population diversity. Furthermore, the proposed algorithm utilizes the shift-based density estimation approach integrated with strength Pareto for density estimation, and it implements bounded exponential crossover (BEX) and polynomial mutation operator (PMO) to avoid solutions trapping in local optima and enhance convergence. The proposed algorithm is validated using several standard benchmark functions. The proposed algorithm’s performance is compared with existing multi-objective algorithms. The experimental results obtained in this study reveal that the proposed algorithm is highly competitive and maintains the desired balance between exploration and exploitation to speed up convergence towards the Pareto optimal front.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.