Two minimum principles which take into account inhomogeneous initial conditions are presented within the context of the linear dynamic theory of elasticity. One principle, formulated in terms of displacements alone, is the dynamic counterpart to the static principle of minimum potential energy; the other principle is formulated in terms of stresses alone, but has no counterpart in elastostatics. Both principles are motivated by taking Laplace transforms of the field equations and boundary values and then using established minimum functionals in the "transform domain". The introduction of an appropriate "weight function" enables one to get back to the original time domain while preserving the minimum character of the transformed functionals. RESUME Deux principes minimum qui fiennent compte de conditions initiales non lin6aires sont pr6sent6s sans le contexte de la th6orie dynamique lin6alre de l'61asticit6. Un des principes, exprim6s en fonction seulement des d6placements, est la contrepartie dynamique du principe statique de l'energie potentieUe minimum; le second principe, exprim6 en fonction des efforts seulement, n'a pas de contrepartie en 61asticit6 statique. Les deux principes sont obtenus en prenant les transform6s de Laplace des 6quations differentielles et des conditions aux limites, puis en utilisant dans le "domaine transform6" des fonctionnels minimum connus. En introduisant une "weight function" appropri6e, il est possible de retourner au dornaine temporel d'origine tout en pr6servant le caractere minimum des fonctionnels transform6s.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.