Abstract. Oil spill models are used to forecast the transport and fate of oil after it has been released. CranSLIK is a model that predicts the movement and spread of a surface oil spill at sea via a stochastic approach. The aim of this work is to identify parameters that can further improve the forecasting algorithms and expand the functionality of CranSLIK, while maintaining the run-time efficiency of the method. The results from multiple simulations performed using the operational, validated oil spill model, MEDSLIK-II, were analysed using multiple regression in order to identify improvements which could be incorporated into CranSLIK. This has led to a revised model, namely CranSLIK v2.0, which was validated against MEDSLIK-II forecasts for real oil spill cases.The new version of CranSLIK demonstrated significant forecasting improvements by capturing the oil spill accurately in real validation cases and also proved capable of simulating a broader range of oil spill scenarios.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.