Rotavirus diarrhea is the major cause of death of millions of children in developing countries besides causing economically significant malady in neonates of many domestic animals. In neonates, the infection is non-viremic, have very short incubation period, and manifests profuse diarrhea and severe dehydration. Concurrent infection with secondary pathogens may augment the disease severity. Diarrhea occurs due to virus-mediated destruction of absorption efficient enterocytes, activation of enteric nervous system, or due to a rotavirus enterotoxin. Diagnosis of the infection relies on conventional techniques like isolation in MA 104 cell lines, electron microscopy, electro-pherotyping, and various serological tests. Presently, diagnosis and molecular typing is performed using serotype specific RT-PCR, sequencing or genomic hybridization techniques. As the rotaviruses are known to exhibit extreme genetic diversity and outplay disinfection procedures, eradication of the pathogen is often difficult. Hence, for prevention, good management practices coupled with vaccination of dam for protecting young ones, has to be practiced. Recently, new generation prophylactic strategies including DNA vaccines, subunit vaccines, virus-like particles (VLPs) and edible vaccines have been found to induce sufficient levels of passive immunity. Aside to the infection in animals, zoonotic significance of the animal rotaviruses has to be further unearthed. In this review, efforts have been made to highlight the importance and prevalence of the disease in bovines, its pathogenesis along with preventive measures, salient features of rotaviruses and their inter-species transmission abilities, zoonotic implications, and a concise account of the infection in various domestic animals and poultry.
Bovine herpes virus 1 (BHV-1) is primarily associated with clinical syndromes such as rhinotracheitis, pustular vulvovaginitis and balanoposthitis, abortion, infertility, conjunctivitis and encephalitis in bovine species. The main sources of infection are the nasal exudates and the respiratory droplets, genital secretions, semen, fetal fluids and tissues. The BHV-1 virus can become latent following a primary infection with a field isolate or vaccination with an attenuated strain. The viral genomic DNA has been demonstrated in the sensory ganglia of the trigeminal nerve in infectious bovine rhinotracheitis (IBR) and in sacral spinal ganglia in pustular vulvovaginitis and balanoposthitis cases. BHV-1 infections can be diagnosed by detection of virus or virus components and antibody by serological tests or by detection of genomic DNA by polymerase chain reaction (PCR), nucleic acid hybridization and sequencing. Inactivated vaccines and modified live virus vaccines are used for prevention of BHV-1 infections in cattle; subunit vaccines and marker vaccines are under investigation.
Highly transparent, conducting, highly oriented, and almost single phase ZnO films have been deposited by simple e-beam evaporation method, and the deposition parameters were optimized. The films were prepared by (a) evaporation of ZnO at different substrate temperatures and (b) evaporation of ZnO at room temperature and subsequent annealing of the films in oxygen ambient at different temperatures. The characterizations of the film were performed by optical absorption spectroscopy (UV-visible), Fourier transform infrared spectroscopy, resistivity measurement, transmission electron microscopy (TEM), photoluminescence, and x-ray diffraction measurement. Absorption spectra revealed that the films were highly transparent and the band gap of the pre- and postannealed films was in good agreement with the reported values. The band gap of the films increases on increasing the substrate temperature as well as annealing temperature, whereas the resistivity of the film decreases with substrate temperature and increases with annealing temperature. Fourier transform infrared spectroscopy of ZnO films confirms the presence of Zn–O bonding. X-ray diffraction, electron diffraction, and TEM images with high resolution and Raman spectra of the films showed the formation of crystalline ZnO having wurtzite structure
Sheeppox and goatpox outbreaks occur often in India incurring huge economic loss to the small ruminant industry. This paper describes two sheeppox outbreaks, of which one occurred in an organized sheep breeding farm at Makhdoom (Uttar Pradesh), India, during 2007 and another in goats at the Central Institute of Research on Goats, Makhdoom (Uttar Pradesh), India during 2008. In the first outbreak, a local Muzaffarnagari sheep breed was affected (n=477) with morbidity and mortality rates, respectively, of 100% and 53.9% accompanied by significant productivity losses. In the 2008 outbreaks, a small number of goats were affected without any mortality. The tissue and swabs collected from both the outbreaks were processed and inoculated onto Vero cells, and the causative agent of the outbreaks, capripox virus (CaPV), was isolated. The identity of the virus was confirmed as CaPV based on electron microscopy, experimental pathogenesis in sheep, capripox-specific conventional and real-time PCRs. Sequence analysis of the P32 envelope protein gene revealed that the causative agent of both outbreaks was confirmed as sheeppox virus (SPPV) implying SPPV infection not only in sheep but also goats in India.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.