Anomalous spectral weight transfer at the superconducting transition of single-crystalline Bi2Sr2CaCu208+5 was observed by high-resolution angle-resolved photoemission spectroscopy. As the sample goes superconducting, not only is there spectral weight transfer from the gap region to the pileup peak as in BCS theory, but along the T-M direction there is also some spectral weight transfer from higher binding energies in the form of a dip. In addition, we note that at the superconducting transition there is a decrease (increase) in the occupied spectral weight for the spectra taken along T-M (T-X).PACS numbers: 74.65.+n, 71.20.Cf, 79.60.Cn In the BCS theory for traditional superconductors the electron Fermi sea is unstable to attractive interactions mediated by phonons. A superconducting gap is formed when the near-Fermi-edge electrons condense to form pairs at low temperatures. As illustrated in the inset of Fig.
High-resolution angle-resolved photoelectron spectroscopic measurements were made of the Fermi edge of a single crystal of Bi2Sr2CaCu2O8 at 90 K along several directions in the Brillouin zone. The resultant Fermilevel crossings are consistent with local-density band calculations, including a point calculated to be of Bi-O character. Additional measurements were made where bands crossed the Fermi level between 100 and 250 K, along with measurements on an adjacent Pt foil. The Fermi edges of both materials agree to within the noise. Below the Fermi level the spectra show correlation effects in the form of an increased effective mass, but the essence of the single-particle band structure is retained. The shape of the spectra can be explained by a lifetime-broadened photohole and secondary electrons. The effective inverse photohole lifetime is linear in energy.
Detailed studies indicate a superconducting gap in the high-temperature superconductor Bi(2)Sr(2)CaCu(2)O(8). Photoemission measurements with high energy and angle resolution isolate the behavior of a single band as it crosses the Fermi level in both the normal and superconducting states, giving support to the Fermi liquid picture. The magnitude of the gap is 24 millielectron volts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.