Colorectal cancer (CRC) is the third most common cancer in the world, and second leading cause of cancer deaths in the US. Although, anti-EGFR therapy is commonly prescribed for CRC, patients harboring mutations in KRAS or BRAF show poor treatment response, indicating an ardent demand for new therapeutic targets discovery. SPINK1 (serine peptidase inhibitor, Kazal type 1) overexpression has been identified in many cancers including the colon, lung, breast and prostate. Our study demonstrates the functional significance of SPINK1 in CRC progression and metastases. Stable knockdown of SPINK1 significantly decreases cell proliferation, invasion and soft agar colony formation in the colon adenocarcinoma WiDr cells. Conversely, an increase in these oncogenic phenotypes was observed on stimulation with SPINK1-enriched conditioned media (CM) in multiple benign models such as murine colonic epithelial cell lines, MSIE and YAMC (SPINK3-negative). Mechanistically, SPINK1 promotes tumorigenic phenotype by activating phosphatidylinositol 3-kinase (PI3K/AKT) and mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) signaling pathways, and the SPINK1-positive WiDr cells are sensitive to AKT and MEK inhibitors. Importantly, SPINK1 silencing mediated upregulation of various Metallothionein isoforms, considered as tumor suppressors in CRC, confer sensitivity to doxorubicin, which strengthens the rationale for using the combinatorial treatment approach for the SPINK1-positive CRC patients. Furthermore, in vivo studies using chicken chorioallantoic membrane assay, murine xenograft studies and metastasis models further suggest a pivotal role of SPINK1 in CRC progression and metastasis. Taken together, our study demonstrates an important role for the overexpressed SPINK1 in CRC disease progression, a phenomenon that needs careful evaluation towards effective therapeutic target development.
Emergence of an aggressive androgen receptor (AR)-independent neuroendocrine prostate cancer (NEPC) after androgen-deprivation therapy (ADT) is well-known. Nevertheless, the majority of advanced-stage prostate cancer patients, including those with SPINK1-positive subtype, are treated with AR-antagonists. Here, we show AR and its corepressor, REST, function as transcriptional-repressors of SPINK1, and AR-antagonists alleviate this repression leading to SPINK1 upregulation. Increased SOX2 expression during NE-transdifferentiation transactivates SPINK1, a critical-player for maintenance of NE-phenotype. SPINK1 elicits epithelial-mesenchymal-transition, stemness and cellular-plasticity. Conversely, pharmacological Casein Kinase-1 inhibition stabilizes REST, which in cooperation with AR causes SPINK1 transcriptional-repression and impedes SPINK1-mediated oncogenesis. Elevated levels of SPINK1 and NEPC markers are observed in the tumors of AR-antagonists treated mice, and in a subset of NEPC patients, implicating a plausible role of SPINK1 in treatment-related NEPC. Collectively, our findings provide an explanation for the paradoxical clinical-outcomes after ADT, possibly due to SPINK1 upregulation, and offers a strategy for adjuvant therapies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.