The self-potential (SP) method detects naturally occurring electric fields which may be produced by electrically conductive mineral deposits such as massive sulfides. Recently, there has been increasing interest in applying this method in a marine environment to explore for seafloor massive sulfide (SMS) deposits which may contain economic resources of base and precious metals. While SMS sites that are associated with active venting and are not buried under sediment cover are known to produce an SP signal, the effectiveness of the method at detecting inactive and sediment-covered deposits remained an outstanding question. We built an instrument capable of recording SP data in a marine setting. We carried out a test of the instrument at the Palinuro Seamount in the Tyrrhenian Sea. Palinuro is one of only a few known sites containing an SMS occurrence which is buried under sediment and not associated with active hydrothermal venting, although diffuse seepage of hydrothermal fluids is known to occur at the site. Elevated electric field strengths recorded in and near the site of previously drilled massive sulfide samples are on the order of 1-3 mV/m. A second zone of high field strengths was detected by us to the north of the drilling area where gravity coring later confirmed the existence of massive sulfides. Our observations indicate that an SP signal can be observed at the site of SMS mineralization even when the mineralized zone is shallowly buried and active hydrothermal venting is not present. These observations could aid in the planning of future marine research expeditions which use the SP method in the exploration of seafloor massive sulfides.
Differential exhumation in the Puna Plateau and Eastern Cordillera of NW Argentina is controlled by inherited paleostructures and resulting paleotopography related to the Cretaceous Salta Rift paleomargins. TheCeno zoic deformation front related to the development of the Andean retro-arc orogenic system is generally associated with >4 km of exhumation, which is recorded by Cenozoic apatite fi ssion-track (AFT) and (U-Th-[Sm])/ He ages (He ages) in the Eastern Cordillera of NW Argentina. New AFT ages from the top of the Nevado de Cachi document Oligocene (ca. 28 Ma) cooling, which, combined with existing data, indicates exhumation of this range between ca. 28 Ma and ca. 14 Ma. However, some of the highest ranges in the Eastern Cordillera preserve Cretaceous ages indicative of limited Cenozoic exhumation. Samples collected from an ~3-km-elevation transect along the northern part of the Sierra de Quilmes paleorift fl ank (Laguna Brava) show AFT ages between ca. 80 and ca. 50 Ma and He ages between ca. 45 and ca. 10 Ma. Another set of samples from an ~1-km-elevation transect farther to the southwest (La Quebrada) shows Cretaceous AFT ages between ca. 116 Ma and ca. 76 Ma, and mainly Cretaceous He ages, in agreement with AFT data. Analysis of existing AFT and He ages from the area once occupied by the Salta Rift reveals a pattern characterized by Cretaceous ages along paleorift highs and Cenozoic ages within paleorift hanging-wall basins and later foreland basin depocenters. This pattern is interrupted by the Sierras Pampeanas at ~28°S, which record mid-Cenozoic ages. Our data are consistent with a complex inherited pattern of pre-Andean paleostructures, likely associated with paleotopography, which was beveled by the Cenozoic regional foreland basin and reactivated during the late Neogene (ca. <10 Ma), strongly controlling the magnitude of Cenozoic uplift and exhumation and thus cooling age distribution. This, combined with variable lithologic erodibility, resulted in an irregular distribution of themochronological ages.
The transient electromagnetic (TEM) method has recently been proposed as a tool for mineral exploration on the seafloor. Similar to airborne TEM surveys conducted on land, marine TEM systems can use a concentric or coincident wire loop transmitter and receiver towed behind a ship. Such towed-loop TEM surveys could be further augmented by placing additional stationary receivers on the seafloor throughout the survey area. We examine the electric fields measured by remote receivers from an inductive source transmitter within a 1D layered earth model. At sea, it is conceivable to deploy either a horizontal transmitter (like the analogous standard airborne configuration), or a more exotic vertical transmitter. Therefore we study and compare the sensitivity of both the vertical and horizontal towed-loop systems to a variety of seafloor conductivity structures.Our results show that the horizontal loop system is more sensitive to the thickness of a buried conductive layer and would be advantageous over the vertical loop system in characterizing the size of a shallowly buried mineralized zone. The vertical loop system is more sensitive to a resistive layer than the horizontal loop system. The vertical electric field produced by the vertical loop transmitter is sensitive to greater depths than the horizontal fields, and measuring the vertical field at the receivers would therefore be advantageous.We also conducted a novel test of a towed horizontal loop system with remote dipole receivers in a marine setting. The system was tested at the Palinuro volcanic complex in the Tyrrhenian Sea, a site of known massive sulfide mineralization. Preliminary results are consistent with shallowly buried material in the seafloor of conductivities > 1 S/m.
We study a new marine electromagnetic configuration that consists of a ship‐towed inductive source transmitter and a series of remote electric dipole receivers placed on the seafloor. The approach was tested at the Palinuro Seamount in the southern Tyrrhenian Sea, at a site where massive sulphide mineralization has been previously identified by shallow drilling. A 3D model of the Palinuro study area was created using bathymetry data, and forward modelling of the electric field diffusion was carried out using a finite volume method. These numerical results suggest that the remote receivers can theoretically detect a block of shallowly buried conductive material at up to ∼100 m away when the transmitter is located directly above the target. We also compared the sensitivity of the method using either a horizontal loop transmitter or a vertical loop transmitter and found that when either transmitter is located directly above the mineralized zone, the vertical loop transmitter has sensitivity to the target at a farther distance than the horizontal loop transmitter in the broadside direction by a few tens of metres. Furthermore, the vertical loop transmitter is more effective at distinguishing the seafloor conductivity structure when the vertical separation between transmitter and receiver is large due to the bathymetry. As a horizontal transmitter is logistically easier to deploy, we conducted a first test of the method with a horizontal transmitter. Apparent conductivities are calculated from the electric field transients recorded at the remote receivers. The analysis indicates higher apparent seafloor conductivities when the transmitter is located near the mineralized zone. Forward modelling suggests that the best match to the apparent conductivity data is obtained when the mineralized zone is extended southward by 40 m beyond the zone of previous drilling. Our results demonstrate that the method adds value to the exploration and characterization of seafloor massive sulphide deposits.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.