Glaucoma is one of the major causes of blindness in the Indian population. Mutations in the myocilin (MYOC) gene have been reported in different populations. However, reports on MYOC mutations in Indian primary open-angle glaucoma (POAG) patients and juvenile open-angle glaucoma (JOAG) patients are sparse. We therefore screened 100 unrelated POAG/JOAG patients for MYOC mutations. Patients with POAG/JOAG were clinically diagnosed. Genomic DNA from such patients was collected and studied for MYOC mutations by direct sequencing. Nucleotide variations were compared with unrelated healthy controls by restriction enzyme digestion. Secondary structure prediction for the sequence variants was performed by Chou-Fasman method. A novel mutation in exon 1 (144 G-->Alpha) resulting in Gln48His substitution was observed in 2% of the patients. Four other polymorphisms were also observed. The novel mutation was seen in four other affected family members of a JOAG patient. The novel mutation was found to alter the secondary structure in the glycosaminoglycan initiation site of the protein. MYOC mutations were found in 2% of the population studied. MYOC gene may not be playing a significant role in causing POAG in the Indian population.
Introduction:The microwave oven has been used quite often for tissue processing, but there are very few studies describing its use in decalcification of bone or teeth. In this study we have attempted to decalcify bone and teeth using a microwave oven and compare the process and results with conventional decalcification methods.Aims and objectives:The objectives of the study were to determine and compare routine decalcification with microwave decalcification of bone and teeth using 5% nitric acid, 5% formic acid, and 14% ethylenediaminetetraacetic acid (EDTA) with respect to speed of decalcification, preservation of tissue structure and staining efficacy.Materials and methods:In our study the total sample size used for both routine and microwave decalcification was 30 premolar teeth and 30 pieces of condyles. The three solutions were dilute nitric acid (5%), formic acid (5%), and EDTA (14%). Each set consisting of the same type of premolars and condyles in each of the three decalcifying solutions were used in both manual method and microwave method.Results:The results in the present study confirmed the fact that the microwave method using nitric acid was indeed the fastest decalcifying method needing just about 2 days for condyle and 4 days for premolars, compared with routine decalcification. The results also showed that the overall histological picture was good with EDTA and formic acid irrespective of the methods used. In the routine method, nitric acid gave poor cellular detail when compared with microwave method.Conclusion:With our study we conclude that microwave oven decalcification is faster than routine decalcification irrespective of the decalcifying agents used. The tissue preservation and staining efficacy was good in microwave nitric acid decalcification compared to routine nitric acid decalcification. Both formic acid and EDTA show good tissue preservation and staining efficacy irrespective of the method used.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.