Advanced high-performance filler metals for wire arc additive manufacturing (WAAM) exist on the market already. Nevertheless, these high-strength steels are not yet widely used in industrial applications due to limited knowledge of cold-cracking susceptibility, welding residual stresses, and therefore sufficient safety in terms of manufacturing and operation. High residual stresses promote cold-cracking risk, especially in the welding of high-strength steels, as the result of a complex interaction between the applied material, process conditions, and component design. The focus of the present investigation was the determination of the influence of the process parameters on the ∆t8/5 cooling time, mechanical properties, and residual stresses to correlate, for the first time, heat control, cooling conditions, and residual stress for WAAM of high-strength filler materials. This contributed to the knowledge regarding the safe avoidance of cold cracking. In addition to a thermophysical simulation using a dilatometer of different high-strength steels with subsequent tensile testing, reference WAAM specimens (open hollow cuboids) were welded while utilizing a high-strength filler metal (ultimate tensile strength >790 MPa). The heat control was varied by means of the heat input and interlayer temperature such that the ∆t8/5 cooling times corresponded to the recommended processing range (approx. 5 s to 20 s). For the heat input, significant effects were exhibited, in particular on the local residual stresses in the component. Welding with an excessive heat input or deposition rate may lead to low cooling rates, and hence to unfavorable microstructure and component properties, but at the same time, is intended to result in lower tensile residual stress levels. Such complex interactions must ultimately be clarified to provide users with easily applicable processing recommendations and standard specifications for an economical WAAM of high-strength steels. These investigations demonstrated a major influence of the heat input on both the cooling conditions and the residual stresses of components manufactured with WAAM using high-strength filler materials. A higher heat input led to longer cooling times (∆t8/5) and approx. 200 MPa lower residual stresses in the surface of the top layer.
Die robotergestützte Betonextrusion ist ein neuartiges additives Fertigungsverfahren, bei dem Strategie, Werkstoff und Förderanlage gezielt aufeinander abgestimmt sein müssen. Insbesondere die reale Form des extrudierten Materialstrangs unterliegt entlang des Startpunkts über Hauptextrusionsphase bis zum Ausschaltvorgang durch lokale Über‐ und Unterextrusionen signifikanten Schwankungen, die den Qualitätsvorgaben meist nicht genügen. In dieser Arbeit wird ein Kalibrierverfahren für Extrusionsprozesse entwickelt, softwareseitig angepasst und erprobt sowie Auswirkungen der Vorschubgeschwindigkeit auf die Bauteilqualität untersucht. Hierzu wurden unterschiedliche Kalibrierverfahren aktueller additiver Fertigungsprozesse betrachtet und hinsichtlich ihrer Verwendbarkeit für die Extrusion von mineralischen Suspensionen ausgewertet. Darauf aufbauend erfolgte die theoretische Erarbeitung einer allgemeingültigen Vorgehensweise zur Kalibrierung und deren praktische Umsetzung. In den durchgeführten Funktionstests verringerte das Kalibrierverfahren die Prozessvorbereitung, erhöhte die Prozesssicherheit durch die stabilisierte Extrusion und verkürzte die Taktzeit. Diese Steigerung der Produktivität in der additiven Fertigung führt einmal zu positiven wirtschaftlichen Effekten und des Weiteren werden Anwendungen von hochfesten Leichtbaustrukturen im Bauwesen attraktiver. Zudem ermöglicht es die serienmäßige Umsetzung von freigeformten Modulbauweisen.
Commercial high-strength filler metals for wire arc additive manufacturing (WAAM) are already available. However, widespread industrial use is currently limited due to a lack of quantitative knowledge and guidelines regarding welding stresses and component safety during manufacture and operation for WAAM structures. In a joint research project, the process- and material-related as well as design influences associated with residual stress formation and the risk of cold cracking are being investigated. For this purpose, reference specimens are welded fully automated with defined dimensions and systematic variation of heat control using a special, high-strength WAAM filler metal (yield strength > 790 MPa). Heat control is varied by means of heat input (200–650 kJ/m) and interlayer temperature (100–300 °C). The ∆t8/5 cooling times correspond with the recommendations of filler metal producers (approx. 5–20 s). For this purpose, additional thermo-physical forming simulations using a dilatometer allowed the complex heat cycles to be reproduced and the resulting ultimate tensile strength of the weld metal to be determined. Welding parameters and AM geometry are correlated with the resulting microstructure, hardness, and residual stress state. High heat input leads to a lower tensile stress in the component and may cause unfavorable microstructure and mechanical properties. However, a sufficiently low interlayer temperature is likely to be suitable for obtaining adequate properties at a reduced tensile stress level when welding with high heat input. The component design affects heat dissipation conditions and the intensity of restraint during welding and has a significant influence on the residual stress. These complex interactions are analyzed within this investigation. The aim is to provide easily applicable processing recommendations and standard specifications for an economical, appropriate, and crack-safe WAAM of high-strength steels.
Die globalen Herausforderungen unserer Zeit sind der Klimawandel, das Bevölkerungswachstum und die Reduzierung des Ressourcenverbrauchs. Für das Bauwesen bedeutet dies, in den kommenden Jahrzehnten mehr zu bauen und gleichzeitig den Ressourcenverbrauch zu verringern und weniger Emissionen auszustoßen. Die handwerklich organisierte Bauindustrie ist weder technologisch noch personell darauf vorbereitet, diese Herausforderungen ökonomisch und ökologisch zu bewältigen. Hier setzt der Sonderforschungsbereich TRR 277 Additive Manufacturing in Construction (AMC) der beiden Universitäten TU Braunschweig und TU München mit seiner Grundlagenforschung an. Der AMC betrachtet die additive Fertigung als eine digitale Schlüsseltechnologie für das Bauwesen, denn diese vereint die Vorteile von automatisierter und individualisierter Fertigung. Bei der additiven Fertigung werden die Bauteile ohne Formenbau schichtweise aufgebaut. Dies schafft grundlegend neue Anforderungen an Werkstoffe, Verfahrenstechniken sowie an Design und Konstruktion und kann nur in hochgradig interdisziplinären Teams von Wissenschaftler:innen aus den Bereichen des Bauwesens und des Maschinenbaus erforscht werden. Die Basis für die werkstoffübergreifende Erforschung unterschiedlicher additiver Fertigungstechnologien für die Anwendung im Bauwesen stellt die über viele Jahre systematisch aufgebaute Forschungsinfrastruktur im Bereich der digitalen Baufabrikation dar. An seinen beiden Standorten, der TU Braunschweig und der TU München, kann der AMC auf innovativste Forschungseinrichtungen zurückgreifen. Darunter befinden sich sowohl DFG‐geförderte Forschungsgroßgeräte wie das Digital Building Fabrication Laboratory (DBFL) und das RoboCoop3D als auch eine Vielzahl eigenfinanzierter innovativer Forschungsgeräte an beiden Standorten. Die AMC‐Forschungsinfrastruktur wird im Laufe des Forschungsprojekts stetig ausgebaut und erweitert. Der vorliegende Beitrag stellt die bestehende sowie die in Anschaffung und Planung befindliche Forschungsinfrastruktur vor.
Wire arc additive manufacturing (WAAM) enables the efficient production of weight-optimized modern engineering structures. Further increases in efficiency can be achieved by using high-strength structural steels. Commercial welding consumables for WAAM are already available on the market. Lack of knowledge and guidelines regarding welding residual stress and component safety during production and operation leads to severely limited use for industry applications. The sensitive microstructure of high-strength steels carries a high risk of cold cracking; therefore, residual stresses play a crucial role. For this reason, the influences of the material, the WAAM process, and the design on the formation of residual stresses and the risk of cold cracking are being investigated. The material used has a yield strength of over 800 MPa. This strength is adjusted via solid solution strengthening and a martensitic phase transformation. The volume expansion associated with martensite formation has a significant influence on the residual stresses. The focus of the present investigation is on the additive welding parameters and component design on their influence on hardness and residual stresses, which are analyzed by means of X-ray diffraction (XRD). Reference specimens (hollow cuboids) are welded fully automated with a systematic variation of heat control and design. Welding parameters and AM geometry are correlated with the resulting microstructure, hardness, and residual stress state. Increased heat input leads to lower tensile residual stresses which causes unfavorable microstructure and mechanical properties. The component design affects heat dissipation conditions and the intensity of restraint during welding and has a significant influence on the residual stress.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.