Trapping and optically interfacing laser-cooled neutral atoms are essential requirements for their use in advanced quantum technologies. Here we simultaneously realize both of these tasks with cesium atoms interacting with a multicolor evanescent field surrounding an optical nanofiber. The atoms are localized in a one-dimensional optical lattice about 200 nm above the nanofiber surface and can be efficiently interrogated with a resonant light field sent through the nanofiber. Our technique opens the route towards the direct integration of laser-cooled atomic ensembles within fiber networks, an important prerequisite for large scale quantum communication schemes. Moreover, it is ideally suited to the realization of hybrid quantum systems that combine atoms with, e.g., solid state quantum devices.
Republication or reproduction of this report or its storage and/or dissemination by electronic means is permitted without the
Chemical actinometry (IUPAC Technical Report)Abstract: This document updates the first version of the IUPAC technical report on "Chemical actinometers" published in Pure Appl. Chem. 61, 187-210 (1989). Since then, some methods have been improved, procedures have been modified, and new substances have been proposed as chemical actinometers. An actinometer is a chemical system or a physical device by which the number of photons in a beam absorbed into the defined space of a chemical reactor can be determined integrally or per time. This compilation includes chemical actinometers for the gas, solid, microheterogeneous, and liquid phases, as well as for the use with pulsed lasers for the measurement of transient absorbances, including the quantum yield of phototransformation, as well as the literature for each of the actinometers. The actinometers listed are for the use in the wavelength range from the UV to the red region of the spectrum. A set of recommended standard procedures is also given. Advantages and disadvantages are discussed regarding the use of chemical actinometers vs. electronic devices for the measurement of the number of photons absorbed. Procedures for the absolute measurement of incident photon flux by means of photodiodes are also discussed.
CONTENTS
The success of advanced quantum communication relies crucially on non-classical light sources emitting single indistinguishable photons at high flux rates and purity. We report on deterministically fabricated microlenses with single quantum dots inside which fulfil these requirements in a flexible and robust quantum device approach. In our concept we combine cathodoluminescence spectroscopy with advanced in situ three-dimensional electron-beam lithography at cryogenic temperatures to pattern monolithic microlenses precisely aligned to pre-selected single quantum dots above a distributed Bragg reflector. We demonstrate that the resulting deterministic quantum-dot microlenses enhance the photon-extraction efficiency to (23±3)%. Furthermore we prove that such microlenses assure close to pure emission of triggered single photons with a high degree of photon indistinguishability up to (80±7)% at saturation. As a unique feature, both single-photon purity and photon indistinguishability are preserved at high excitation power and pulsed excitation, even above saturation of the quantum emitter.
A series of axial and equatorial diastereomers of (coumarin-4-yl)methyl-caged adenosine cyclic 3',5'-monophosphates (cAMPs), 1-6, having methoxy, dialkylamino, or no substituent in the 6- and/or 7-positions, and their corresponding 4-(hydroxymethyl)coumarin photoproducts 7-12 have been synthesized. The photochemical and UV/vis spectroscopical properties (absorption and fluorescence) of 1-6 and 7-12 have been examined in methanol/aqueous HEPES buffer solution. Donor substitution in the 6-position causes a strong bathochromic shift of the long-wavelength absorption band, whereas substitution in the 7-position leads only to a weak red shift. The photochemical cleavage of the caged cAMPs was investigated, and the photoproducts were analyzed. Photochemical quantum yields, fluorescence quantum yields, and lifetimes of the excited singlet states were determined. The highest values of photochemical quantum yields (photo-S(N)1 mechanism) were obtained with caged cAMPs having a donor substituent in the 7-position of the coumarin moiety, caused by electronic stabilization of the intermediately formed coumarinylmethyl cation. With donor substitution in the 6-position, the resulting moderate electronic stabilization of the coumarinylmethyl cation is overcompensated by the strong bathochromic shift, reducing the energy gap between the excited-state S(1) and the corresponding coumarinylmethyl cation. The rate constant for the ester cleavage and liberation of cAMP is about 10(9) s(-1), estimated for the axial isomer of 6 by analysis of the fluorescence increase of the alcohol 12 formed upon laser pulse photolysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.