The ability to study the molecular biology of living single cells in heterogeneous cell populations is essential for next generation analysis of cellular circuitry and function. Here, we developed a single-cell nanobiopsy platform based on scanning ion conductance microscopy (SICM) for continuous sampling of intracellular content from individual cells. The nanobiopsy platform uses electrowetting within a nanopipette to extract cellular material from living cells with minimal disruption of the cellular milieu. We demonstrate the subcellular resolution of the nanobiopsy platform by isolating small subpopulations of mitochondria from single living cells, and quantify mutant mitochondrial genomes in those single cells with high throughput sequencing technology. These findings may provide the foundation for dynamic subcellular genomic analysis.
b S Supporting Information E lectrical devices that can measure ion current through a nanopore are gaining attention as a new way to design sensors with nanoscale resolution. 1,2 Receptors immobilized to nanopore-based ion current sensors have included proteins, 3À5 enzymes, 6 DNA, 7 aptamers, 8 ligands, 9,10 and small biomolecules, 11,12 allowing nanoscale measurement of a variety of analytes. Sensing by modulation of ion current in functionalized nanopores is distinct from the technique of resistive-pulse sensing, which is used to characterize macromolecules by translocation through a pore. 13 To distinguish this mechanism in functionalized nanopipette sensors, 14 we coined the term signal transduction by ion nanogating (STING), evoking both the role of ion current and the needlelike shape of the nanopipette. Essential to the sensitivity of many solid-state nanopore sensors is selective permeability of electrolytes, or ion current rectification, when a bias is applied across the nanopore. Ion current rectification (ICR) arises from the selective interaction between ions in solution and the surface of a charged, asymmetrically shaped nanochannel or conical nanopore. 15 Nanomaterials exhibiting ICR and used as sensors include track-etched nanopores in polymer membranes 16 and quartz nanopipettes. 17 In either case, the surface modification of nanopores with appropriate receptors is a key challenge to sensor development.To date, the reversible binding of analytes with nanopore sensors has proven challenging. However, this is a critical issue if such devices are to be used for applications such as continuous monitoring or repeated measurements with one sensor. Multiple uses for a single sensor will also overcome problems in reproducible nanopore fabrication, which limits quantitative measurements for many sensors reported in the literature. For applications using
Manipulation and analysis of single cells is the next frontier in understanding processes that control the function and fate of cells. Herein we describe a single-cell injection platform based on nanopipettes. The system uses scanning microscopy techniques to detect cell surfaces, and voltage pulses to deliver molecules into individual cells. As a proof of concept, we injected adherent mammalian cells with fluorescent dyes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.