Methoxypolyethylene glycol of molecular weight 5000 was converted to a reactive succinimidyl carbonate form (SC-PEG). The usefulness of this new polymeric reagent for the covalent attachment of polyethylene glycol to proteins was evaluated. SC-PEG was found to be sufficiently reactive to produce extensively modified proteins under mild conditions within 30 min, showing the highest reactivity around pH 9.3. The commonly used succinimidyl succinate derivative of methoxypolyethylene glycol (SS-PEG) served as a reference standard to which the new reagent was compared. The stability of the polymer-protein linkages, studied on a series of PEG-modified bovine serum albumins, provided the single most important difference between the two activated polymers. Urethane-linked PEG-proteins obtained through the use of SC-PEG showed considerably higher chemical stability than SS-PEG-derived conjugates. The measured rate constants of aminolysis (using N alpha-acetyllysine) and hydrolysis showed that SC-PEG is slightly less reactive yet more selective of the two reagents. Hydrolysis of the active groups on SC-PEG was on average twofold slower than that on SS-PEG. The differences in the rates of aminolysis were even smaller than those in hydrolysis. PEG-trypsin conjugates produced by both activated polymers showed similar properties: they had no proteolytic activity, well-preserved esterolytic activity, and enhanced activity toward p-nitroanilide substrates. Michaelis-Menten constants of the modified enzymes were determined using N alpha-benzyloxycarbonyl-L-arginine p-nitroanilide. These measurements indicated that the attachment of PEG to trypsin caused an increase in both the rate of turnover of the substrate and its affinity toward the modified enzymes. Through a series of experiments involving the appropriate polymeric and low-molecular-weight model compounds, it was demonstrated that these increases in amidolytic activity were unrelated to tyrosyl residues acylation by either one of the activated polymers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.