Background Allium chinense G. Don is a medicinal and aromatic herb belonging to the family Amaryllidaceae, characterized by a high saponin content. The previous report has mostly been focused on the bulb, and there is very limited work on the leaf. The information about biological and chemical constituent of A. chinense leaf is still inadequate in contrast to the investigations reported on the bulb. To the best of our knowledge, there is no report on the hexane extract of both bulb and leaf extract. Therefore, the present investigation was focused on identifying and characterization of the hexane extracts of A. chinense bulb and leaf quantitatively and by using the GC-MS method and to know its scavenging, antibacterial, and antifungal activity. Results Twenty-eight bioactive compounds were identified in the bulb and nine in the leaf extract by GC-MS analysis. The versatile compounds present in the bulb are 2-methyloctacosane (21.30%), tetracontane (14.05%), eicosane, 10-methyl (12.06%), heneicosane (8.46%), octadecyl trifluoroacetate (6.48%), and 1-heneicosanol (5.76%), whereas in the leaf, it was phytol (35.76%), tetratetracontane (18.49%), perhydrofarnesyl acetone (14.76%), and heptadecane, 2,6-dimethyl (10.79%). In quantitative estimation, saponins were estimated to have the highest with 375.000 ± 0.577 mg/g in the leaf and 163.750 ± 0.433 mg/g in the bulb. The DPPH antioxidant scavenging activity was found to be minimum in both the bulb (IC50 = 678.347 μg/ml) and leaf (IC50 = 533.337 μg/ml). A. chinense extracts of both leaf and bulb exerted potential antibacterial effects against Staphylococcus aureus and Pseudomonas aeruginosa. Leaf extract exhibited greater antifungal activity than the bulb against Aspergillus niger. Conclusion From the analysis, the hexane leaf extract exhibited higher antibacterial, antifungal, and antioxidant activity than the bulb. Their superior activity might be due to the higher content of total saponin and terpenes. This result will lead to further in-depth research towards the potential use of this plant; the bio-constituents can be further isolated and used in medical and therapeutic applications.
Aim: Biosynthesis of selenium nanoparticles (SeNPs) has gained significant interest due to their distinctive chemical and biological properties that is essential for potential application in various fields. Methods:In the present study, propolis, the beehive product collected from 5 different Indian states like Haryana, Himachal Pradesh, Uttaranchal, Karnataka and Kerala were used for the biosynthesis of SeNPs and characterized by using UV-vis spectrophotometer, fourier transform spectroscopy (FT-IR), X-ray diffraction (XRD) and scanning electron microscopy (SEM).Results: SeNPs biosynthesized by propolis were observed as crystalline, oval shaped and smooth surface particles. Study also reports the efficiency of 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) (ABTS), 2,2-diphenyl-1picrylhydrazyl (DPPH), Fluorescence recovery after photobleaching (FRAP) and superoxide dismutase (SOD) assay to estimate the antioxidant potential. The antimicrobial assay was evaluated only for SeNPs synthesized from propolis extracts obtained from Karnataka state showed high antioxidant activity. The antibacterial activity against pathogenic gram-positive bacterial strains (Staphylococcus aureus, Bacillus cereus and Streptococcus mutans), gram-negative bacterial strains (Escherichia coli, Salmonella typhi and Pseudomonas aeruginosa) was evaluated by resazurin microtiter plate method to check the minimum inhibition concentration (MIC). The antifungal activity of pathogenic fungi such as Aspergillus niger, Aspergillus flavon and Candida albicans were determined by well diffusion method. Conclusion:It is the first report describing the biosynthesis of selenium nanoparticles using bee propolis. This study demonstrated the antioxidant and antimicrobial potential of SeNPs biosynthesised by using ethanol extract of propolis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.