Pyroxenes ((Ca, Mg, Fe, Mn) 2 Si 2 O 6 ) belong to the most abundant rockforming minerals that make up the surface of rocky planets and moons. Therefore sputtering of pyroxenes by solar wind ions has to be considered as a very important process for modifying the surface of planetary bodies. In order to quantify this effect, sputtering of wollastonite (CaSiO 3 ) by He 2+ ions, which are seen as a very prominent contribution to solar wind potential sputtering, was investigated. Thin films of CaSiO 3 deposited on a quartz crystal microbalance were irradiated allowing precise in-situ real time sputtering yield measurements. Experimental results were compared with simulations with the code SDTrimSP, which were improved by adapting the used surface binding energy.On a freshly prepared surface He 2+ ions show a significant increase in sputtering compared to equally fast He + ions. The yield, however, decreases exponentially with fluence, reaching steady state at considerably lower values after sputtering of the first few monolayers.Experiments using Ar 8+ ions show a similar behavior and are qualitatively explained by a preferential depletion of surface oxygen due to potential sputtering. A corresponding quantitative model is applied, which is able to reproduce the observed potential sputtering behavior of both He and Ar very well. The results of these calculations support the assumption that mainly O atoms are affected by potential sputtering. We conclude that the defect-mediated model of potential sputtering is also well-suited for CaSiO 3 .
The provision of a particle and power exhaust solution which is compatible with first-wall components and edge-plasma conditions is a key area of present-day fusion research and mandatory for a successful operation of ITER and DEMO. The work package plasma-facing components (WP PFC) within the European fusion programme complements with laboratory experiments, i.e. in linear plasma devices, electron and ion beam loading facilities, the studies performed in toroidally confined magnetic devices, such as JET, ASDEX Upgrade, WEST etc. The connection of both groups is done via common physics and engineering studies, including the qualification and specification of plasma-facing components, and by modelling codes that simulate edge-plasma conditions and the plasma-material interaction as well as the study of fundamental processes. WP PFC addresses these critical points in order to ensure reliable and efficient use of conventional, solid PFCs in ITER (Be and W) and DEMO (W and steel)
The sputtering of wollastonite (CaSiO3) by solar wind-relevant ions has been investigated experimentally and the results are compared to the binary collision approximation (BCA) codes SDTrimSP and SRIM-2013. Absolute sputtering yields are presented for Ar projectiles as a function of ion impact energy, charge state and impact angle as well as for solar wind H projectiles as a function of impact angle. Erosion of wollastonite by singly charged Ar ions is dominated by kinetic sputtering. The absolute magnitude of the sputtering yield and its dependence on the projectile impact angle can be well described by SDTrimSP as long as the actual sample composition is used in the simulation. SRIM-2013 largely overestimates the yield especially at glancing impact angles. For higher Ar charge states, the measured yield is strongly enhanced due to potential sputtering. Sputtering yields under solar wind-relevant H + bombardment are smaller by two orders of magnitude compared to Ar. Our experimental yields also show a less pronounced angular dependence than predicted by both BCA programs, probably due to H implantation in the sample. Based on our experimental findings and extrapolations to other solar wind ions by using SDTrimSP we present a model for the complete solar wind sputtering of a flat wollastonite surface as a function of projectile ion impact angle, which predicts a sputtering yield of 1.29 atomic mass units per solar wind ion for normal impact. We find that mostly He and some heavier ions increase the sputtering yield by more than a factor of two as compared to H + bombardment only.
The surface of Mercury is continuously exposed to impinging solar wind ions. To improve the understanding of space weathering and exosphere formation, a detailed investigation of the ion-surface interaction is necessary. Magnesium and iron rich pyroxene (Ca,Mg,Fe) 2 [Si 2 O 6 ] samples were used as analogues for Mercury's surface and irradiated with He + ions at solar wind energies of 4 keV. Several regimes of implantation and sputtering were observed there. The total estimated mass of implanted He coincides with the mass decrease due to He outgassing during subsequent Thermal Desorption Spectroscopy measurements. Comparison to established modeling efforts and SDTrimSP simulations show that a He saturation concentration of 10 at.% has to be assumed. A complete removal of He is observed by heating to 530 K. On the surface of Mercury, temperatures between about 100 K and 700 K are expected. This temperature will therefore influence the implantation and release of He into Mercury's exosphere.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.