Two classes of models attempt to explain why obligate partheno-genesis only rarely replaces sexual reproduction in natural populations, in spite of the apparent reproductive advantage that parthenogens gain by producing only female offspring. The mutation-accumulation models suggest that sex is adaptive because it purges the genome of harmful recurrent mutations. The ecological genetic models postulate that sex is adaptive in variable environments, particularly when the relevant variation is generated by coevolutionary interactions with parasites. Both of these models have considerable merit, but would seem to have limitations. The mutation-accumulation models require high rates of mutation; the coevolutionary models require that parasites have severe fitness effects on their hosts. In addition, parasites could select for clonal diversity and thereby erode any advantage that sex gains by producing variable progeny. Here we consider the interaction between mutation accumulation and host-parasite coevolution. The results suggest that even moderate effects by parasites combined with reasonable rates of mutation could render sex evolutionarily stable against repeated invasion by clones.
The mutation accumulation hypothesis predicts that sex functions to reduce the population mutational load, while the Red Queen hypothesis holds that sex is adaptive as a defense against coevolving pathogens. We used computer simulations to examine the combined and separate effects of selection against deleterious mutations and host-parasite coevolution on the spread of a clone into an outcrossing sexual population. The results suggest that the two processes operating simultaneously may select for sex independent of the exact shape of the function that maps mutation number onto host fitness.
The mutation accumulation hypothesis predicts that sex functions to reduce the population mutational load, while the Red Queen hypothesis holds that sex is adaptive as a defense against coevolving pathogens. We used computer simulations to examine the combined and separate effects of selection against deleterious mutations and host-parasite coevolution on the spread of a clone into an outcrossing sexual population. The results suggest that the two processes operating simultaneously may select for sex independent of the exact shape of the function that maps mutation number onto host fitness.
In asexual lineages, both synonymous and nonsynonymous sequence polymorphism may be reduced due to severe founder effects when asexual lineages originate. However, mildly deleterious (nonsynonymous) mutations may accumulate after asexual lineages are formed, because the efficiency of purifying selection is reduced even in the nonrecombining mitochondrial genome. Here we examine patterns of synonymous and nonsynonymous mitochondrial sequence polymorphism in asexual and sexual lineages of the freshwater snail Campeloma. Using clade-specific estimates, we found that synonymous sequence polymorphism was significantly reduced by 75% in asexuals relative to sexuals, whereas nonsynonymous sequence polymorphism did not differ significantly between sexuals and asexuals. Two asexual clades had high negative values for Tajima's D statistic. Coalescent simulations confirmed that various bottleneck scenarios can account for this result. We also used branch-specific estimates of the ratio of amino acid to silent substitutions, K a /K s . Our study revealed that K a /K s ratios are six times higher in terminal branches of independent asexual lineages compared to sexuals. Coalescent-based reconstruction of gene networks for all sexual and asexual clades indicated that nonsynonymous mutations occurred at a higher frequency in recently derived asexual haplotypes. These findings suggest that patterns of synonymous and nonsynonymous nucleotide polymorphism in asexual snail lineages may be shaped by both severe founder effect and relaxed purifying selection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.