Autologous bone is the preferred bone graft material because it carries proteins as bone-enhancing substrates, minerals, and vital bone cells. Calcium sulfate (CS) is a well-tolerated, biodegradable, osteoconductive bone graft substitute and is a reasonable alternative to autogenous bone graft. Blood vessels are an important component of bone formation and maintenance. The process of vascular induction is called angiogenesis, and it plays a key role in all regenerative processes. Bone tissue differentiation is related to the local presence of blood vessels. One method to evaluate the presence of blood vessels in a tissue is to count the microvessels to evaluate microvessel density (MVD). The aim of the present study was to conduct a comparative evaluation of microvessel density in sites treated with CS and autologous bone in rabbits, with or without e-PTFE nonresorbable membranes (Gore-Tex, Flagstaff, Ariz). Nine New Zealand rabbits, each weighing about 2.5 kg, were used in this experiment. Three 6-mm wide defects were created in each tibial metaphysis. The defects were filled in a random way. The defects of group 1 (3 rabbits) were filled with CS granules (Surgiplaster, Classimplant, Rome, Italy) and covered with e-PTFE membranes. The defects in group 2 (3 rabbits) were filled with CS granules (Surgiplaster). The defects in group 3 (3 rabbits) were filled with autologous bone. A total of 54 defects were filled (18 with CS and e-PTFE membranes, 18 with CS alone, and 18 with autologous bone). No postoperative deaths or complications occurred. All nine animals were sacrificed at 4 weeks. MVD results were as follows: in the first group, 9.88 +/- 4.613; in the second group, 7.92 +/- 1.998; and in the third group, 5.56 +/- 1.895. P = .000 was highly significant. Statistically significant differences were found between groups 1 and 3, 1 and 2, and 2 and 3. The presence of more blood vessels in the sites treated with CS could help to explain the good results reported in the literature with the use of CS.
Aging of human Achilles tendon results in changes in both cellular and fibrous components. Cells flatten and become less numerous. Their thin and long cytoplasmatic projections tend to shorten and diminish in number. Tendon fibers lose their typical undulating appearance and become quite straight. Collagen fibril diameter, small and uniform in the neonatal period, becomes large and extremely variable from adolescence onwards. Age related morphometric changes include a decrease in the average, maximum diameter and density of collagen fibrils and an increase of fibril concentration. In our opinion these morphological and morphometric variations are strictly related to functional requirements.
The primary aim of this work was to evaluate the neurovascular network of the pes anserinus (PA) at its tibial insertion because the PA is often used for anterior cruciate ligament (ACL) reconstruction. Four fresh cadaver knees were injected with India ink gelatin solution and the arteries that supply blood to the PA were identified; microscopic studies of vessels and nerve fibers were also performed. Superficial and deep branches of the inferior medial genicular artery contribute to an arterial arch that courses deep to the PA insertion. A widespread array of small vessels and nerve fibers penetrate the PA insertion and course along the length of the gracilis and semitendinosus tendons. Computer analysis revealed that the mean diameter of the vessels decreased from 2201 microm at the insertion to 661 microm midway along the length of the tendon (mean tendon length = 17 cm; range = 13-21 cm); the cross-sectional area of the vessels per histologic section decreased from 336.37-137.05 microm(2). This study demonstrates that the PA insertion is well vascularized and richly innervated and that these morphological features continue along the length of the tendons.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright 漏 2024 scite LLC. All rights reserved.
Made with 馃挋 for researchers
Part of the Research Solutions Family.