Several paper mills in Wisconsin have programs for spreading paper mill residuals (PMR) on land. A growing number of vegetable farmers recognize the agronomic benefits of PMR applications, but there have been no investigations on the use of PMR for control of vegetable crop diseases. Our objective was to determine the effect of PMR amendments on soilborne and foliar diseases of cucumber and snap bean grown on a sandy soil. Raw PMR, PMR composted without bulking agent (PMRC), or PMR composted with bark (PMRBC) were applied annually in a 3-year rotation of potato, snap bean, and pickling cucumber. Several naturally occurring diseases were evaluated in the field, along with in situ field bioassays. All amendments suppressed cucumber damping-off and Pythium blight and foliar brown spot of snap bean. Both composts reduced the incidence of angular leaf spot in cucumber. In a separate field experiment planted with snap bean for two consecutive years, all amendments reduced common root rot severity in the second year. In a greenhouse experiment, the high rate of PMRBC suppressed anthracnose of snap bean. These results suggest that the application of raw and composted PMR to sandy soils has the potential to control several soilborne and foliar diseases.
Although the genetic basis of multiple disease resistance (MDR) is poorly understood, it is of great value for understanding the evolution of disease resistance in natural plant populations and for increasing crop yields in agriculture. In Brassica rapa, we studied genetic correlations among levels of disease resistance to three fungal pathogens: Peronospora parasitica, Albugo candida and Leptosphaeria maculans. A large, replicated quantitative genetics experiment used artificial selection on resistance to individual pathogens, and examined correlated responses to selection for resistance to other, unselected pathogens. Data from 9518 plants, each measured simultaneously for resistance to three fungal pathogens, showed heritable genetic variation for resistance to each pathogen and a positive genetic correlation between resistance to P parasitica and L. maculans. This indicates that some resistance genes provide defence against fundamental characteristics common to two taxonomic orders of fungal pathogens. Conceivably, such MDR could contribute to a durable defence that might not be easily circumvented by rapidly evolving fungal pathogens.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.