Photonic integrated circuits (PICs) are considered as the way to make photonic systems or subsystems cheap and ubiquitous. PICs still are several orders of magnitude more expensive than their microelectronic counterparts, which has restricted their application to a few niche markets.
Security in quantum cryptography [1, 2] is continuously challenged by inventive attacks [3][4][5][6][7] targeting the real components of a cryptographic setup, and duly restored by new countermeasures [8][9][10] to foil them. Due to their high sensitivity and complex design, detectors are the most frequently attacked components. Recently it was shown that two-photon interference [11] from independent light sources can be exploited to avoid the use of detectors at the two ends of the communication channel [12,13]. This new form of detection-safe quantum cryptography, called Measurement-Device-Independent Quantum Key Distribution (MDI-QKD), has been experimentally demonstrated [13][14][15][16][17][18], but with modest delivered key rates.Here we introduce a novel pulsed laser seeding technique to obtain high-visibility interference from gain-switched lasers and thereby perform quantum cryptography without detector vulnerabilities with unprecedented bit rates, in excess of 1 Mb/s. This represents a 2 to 6 orders of magnitude improvement over existing implementations and for the first time promotes the new scheme as a practical resource for quantum secure communications. * marco.lucamarini@crl.toshiba.co.uk arXiv:1509.08137v2 [quant-ph] In Quantum Cryptography, a sender Alice transmits encoded quantum signals to a receiver Bob, who measures them and distils a secret string of bits with the sender via public discussion [1].Ideally, the use of quantum signals guarantees the information-theoretical security of the communication [2]. In practice, however, Quantum Cryptography is implemented with real components, which can deviate from the ideal description. This can be exploited to circumvent the quantum protection if the users are unaware of the problem [19].Usually the most complex components are also the most vulnerable. Therefore the vast majority of the attacks performed so far have targeted Bob's single photon detectors [3][4][5][6][7]. 13] is a recent form of Quantum Cryptography conceived to remove the problem of detector vulnerability. As depicted in Fig. 1(a), two light pulses are independently encoded and sent by Alice and Bob to a central node, Charlie. This is similar to a quantum access network configuration [20], but in MDI-QKD the central node does not need to be trusted and could even attempt to steal information from Alice and Bob. To follow the MDI-QKD protocol, Charlie must let the two light pulses interfere at the beam splitter inside his station and then measure them. The result can disclose the correlation between the bits encoded by the users, but not their actual values, which therefore remain secret. If Charlie violates the protocol and measures the pulses separately, he can learn the absolute values of the bits, but not their correlation. Therefore he cannot announce the correct correlation to the users, who will then unveil his attempt through public discussion.Irrespective of Charlie's choice, the users' apparatuses no longer need a detector and the detection vulnerability of Quantum Cryp...
We analyse the finite-size security of the efficient Bennett-Brassard 1984 protocol implemented with decoy states and apply the results to a gigahertz-clocked quantum key distribution system. Despite the enhanced security level, the obtained secure key rates are the highest reported so far at all fibre distances.
Quantum key distribution (QKD) uniquely allows distribution of cryptographic keys with security verified by quantum mechanical limits. Both protocol execution and subsequent applications require the assistance of classical data communication channels. While using separate fibers is one option, it is economically more viable if data and quantum signals are simultaneously transmitted through a single fiber. However, noise-photon contamination arising from the intense data signal has severely restricted both the QKD distances and secure key rates. Here, we exploit a novel temporal-filtering effect for noise-photon rejection. This allows high-bit-rate QKD over fibers up to 90 km in length and populated with error-free bidirectional Gb/s data communications. With high-bit rate and range sufficient for important information infrastructures, such as smart cities and 10 Gbit Ethernet, QKD is a significant step closer towards wide-scale deployment in fiber networks.
Gallium-nitride (GaN) based light-emitting diodes (LEDs) are highly-efficient sources for general purpose illumination. Visible light communications (VLC) uses these sources to supplement existing wireless communications by offering a large, licence-free region of optical spectrum. Here we report on progress in the development of micro-scale GaN LEDs (micro-LEDs), optimized for VLC. These blue-emitting micro-LEDs are shown to have very high electrical-to-optical modulation bandwidths, exceeding 800 MHz. The data transmission capabilities of the micro-LEDs are illustrated by demonstrations using on-off-keying (OOK), pulse-amplitude modulation (PAM) and orthogonal frequency division multiplexing (OFDM) modulation schemes to transmit data over free space at rates of 1.7, 3.4 and 5 Gbps, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.