Hesperidin is the most common flavonoid found in citrus fruits and is expected to exert vasodilation action relevant to its health benefits. The present study aimed to explore the effect of hesperidin on the vascular responses in normotensive and hypertensive rats and the involvement of NO-synthase and K channels. The 15-week-old Wistar and spontaneously hypertensive rats (SHR) were randomized to orally receive either hesperidin (50 mg/kg/day) or a corresponding volume of the water for 4 weeks. Vascular responses of isolated femoral arteries were studied with myograph in control conditions and during inhibition of NO-synthase with l-NNA and K channels with 4-AP. Hesperidin had no effect on blood pressure. Endothelium-dependent vasodilation in Wistar and SHR was significantly improved by the treatment with hesperidin. The contraction responses after l-NNA were increased in all groups of rats to similar extent, but relaxatory responses were significantly attenuated only in SHR. The inhibition of K channels significantly reduced endothelium-dependent vasodilatory responses in only in SHR administered with hesperidin. The results of our experiment indicate that hesperidin might improve the endothelium-dependent vasodilation during hypertension, possibly through the enhancement of K channels function. Copyright © 2016 John Wiley & Sons, Ltd.
Research in the Department of Pharmacology started to focus intensively on fetal circulation in the 60s. Results of experiments contributed to clarification of the conversion of fetal circulation type to the adult type: the mechanism of the ductus arteriosus closure, examination of fetal and neonatal pulmonary vessel responses. In the early 80s, increased attention was dedicated to fetal vascular endothelium, later on to vascular reactivity in relation to the endothelium in adult animals. We developed original models of vascular endothelial damage using the perfusion method (repeated vasoconstrictive stimuli, deendothelization by air bubbles). We developed a new technique for in vitro endothelial loss quantification on Millipore filters. Under in vitro conditions, the protective effects of sulodexide and pentoxifylline on vascular endothelium were evaluated. In recent years were studied protective effects of selected substances in vivo in models of endothelial damage (e.g. stress, toxic tissue damage, diabetes mellitus, hypertension). The role of potassium channels in the hypertension model was studied in cooperation with the Czech Academy of Sciences. Assessment of vascular reactivity in the diabetic model was significantly improved by computer. In addition to experimental work, the department is solving problems of clinical pharmacology – especially drug risk evaluation (non-steroidal anti-inflammatory drugs). Recently, we have dealt with pharmacoepidemiological studies in geriatric patients and with cardiovascular risk of NSAIDs in relation to pharmacotherapy. The results of these studies may be an impulse for targeted problem solving in our experiments.
Diabetes mellitus is associated with many complications including retinopathy, nephropathy, neuropathy and angiopathy. Increased cardiovascular risk is accompanied with diabetes-induced endothelial dysfunction. Pharmacological agents with endothelium-protective effects may decrease cardiovascular complications. In present study sulodexide (glycosaminoglycans composed from heparin-like and dermatan fractions) was chosen to evaluate its protective properties on endothelial dysfunction in diabetes. Effect of sulodexide treatment (SLX, 100 UI/kg/day, i.p.) in 5 and 10 weeks lasting streptozotocin-induced diabetes (30 mg/kg/day, i.p. administered for three consecutive days) was investigated. Animals were divided into four groups: control (injected with saline solution), control-treated with sulodexide (SLX), diabetic (DM) and diabetic-treated with sulodexide (DM+SLX). The pre-prandial and postprandial plasma glucose levels, number of circulating endothelial cells (EC) and acetylcholine-induced relaxation of isolated aorta and mesenteric artery were evaluated. Streptozotocin elicited hyperglycemia irrespective of SLX treatment. Streptozotocin-induced diabetes enhanced the number of circulating endothelial cells compared to controls. SLX treatment decreased the number of EC in 10-week diabetes. Acetylcholine-induced relaxation of mesenteric arteries was significantly impaired in 5 and 10-week diabetes. SLX administration improved relaxation to acetylcholine in 5 and 10- week diabetes. Diabetes impaired acetylcholine-induced relaxation of rat aorta irrespective of SLX treatment. Our results demonstrate that SLX treatment lowers the number of circulating endothelial cells and improves endothelium-dependent relaxation in small arteries. These findings suggest endothelium-protective effect of sulodexide in streptozotocin-induced diabetes.
This study investigates the effects of long-term treatment with sulodexide (SLX) on norepinephrine (NE)-induced contractions, acetylcholine(Ach)-induced relaxations, acute cyclooxygenase blockade by diclofenac (DIC) in isolated femoral arteries (FA) and the parameters of oxidative phosporylation in liver mitochondria. 15-weeks old Wistar rats were divided into four groups: control (C; injected with saline solution), treated control (C+SLX), diabetic (DM) and treated diabetic (DM+SLX). Diabetes was induced with a single i.v. dose of streptozotocin (STZ) 45 mg.kg-1. SLX was administered i.p., at dose 100 IU.kg-1 daily for 5 weeks. Vascular responses of isolated femoral arteries were measured using Mulvany-Halpern myograph. Respiratory function of the mitochondria was determined using voltamperometric method on oxygraph Gilson. In diabetic rats the amplitude of maximal response to NE was elevated. DIC pretreatment decreased the amplitudes of NE-induced contractions in all groups of rats. SLX treatment decreased sensitivity of FA to NE and caused higher relaxatory responses to Ach in C and DM. Oxygen consumption and phosphorylation rates ([QO2(S3)], [QO2(S4)] and (OPR)) and respiratory control ratio (RCR) were decreased in the mitochondria of DM rats. Mitochondria of C rats were not affected with SLX treatment. Administration of SLX in DM rats was associated with increase of RCR, other parameters were not affected. Our findings suggest that SLX treatment might be associated with vasculoprotective effects during diabetes and improvement of mitochondrial function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.