Chemicals can elicit T-cell-mediated diseases such as allergic contact dermatitis and adverse drug reactions. Therefore, testing of chemicals, drugs and protein allergens for hazard identification and risk assessment is essential in regulatory toxicology. The seventh amendment of the EU Cosmetics Directive now prohibits the testing of cosmetic ingredients in mice, guinea pigs and other animal species to assess their sensitizing potential. In addition, the EU Chemicals Directive REACh requires the retesting of more than 30,000 chemicals for different toxicological endpoints, including sensitization, requiring vast numbers of animals. Therefore, alternative methods are urgently needed to eventually replace animal testing. Here, we summarize the outcome of an expert meeting in Rome on 7 November 2009 on the development of T-cell-based in vitro assays as tools in immunotoxicology to identify hazardous chemicals and drugs. In addition, we provide an This article is dedicated to the memory of our colleague and friend Reinhard Wanner, died 2 April 2010. Cellular and Molecular Life Sciences overview of the development of the field over the last two decades.
The mouse myosin light-chain 1A (MLC1A) gene, expressed in the atria of the adult heart, is one of the first muscle genes to be activated when skeletal as well as cardiac muscles form in the embryo. It is also transcribed in skeletal muscle cell lines at the onset of differentiation. Transient transfection assays of mouse skeletal muscle cell lines with DNA constructs containing MLC1A promoter fragments fused to the chloramphenicol acetyltransferase (CAT) gene show that the first 630 bp of the promoter is sufficient to direct expression of the reporter gene during myotube formation. Two E boxes located at bp -76 and -519 are necessary for this regulation. MyoD and myogenin proteins bind to them as heterodimers with E12 protein and, moreover, transactivate them in cotransfection experiments with the MLC1A promoter in nonmuscle cells. Interestingly, the effect of mutating each E box is less striking in primary cultures than in the C2 or Sol8 muscle cell line. A DNA fragment from bp -36 to -597 confers tissue- and stage-specific activity to the herpes simplex virus thymidine kinase promoter in both orientations, showing that the skeletal muscle-specific regulation of the MLC1A gene is under the control of a muscle-specific enhancer which extends into the proximal promoter region. At bp -89 is a diverged CArG box, CC(A/T)6AG, which binds the serum response factor (SRF) in myotube nuclear extracts, as does the wild-type sequence, CC(A/T)6GG. Both types of CArG box also bind a novel myotube-enriched complex which has contact points with the AT-rich part of the CArG box and adjacent 3' nucleotides. Mutations within the CArG box distinguish between the binding of this complex and binding of SRF; only SRF binding is directly involved in the specific regulation of the MLC1A gene in skeletal muscle cell lines.
The cytokines IL-6, IL-1b, TGF-b, and IL-23 are considered to promote Th17 commitment. Langerhans cells (LC) represent DC in the outer skin layers of the epidermis, an environment extensively exposed to pathogenic attack.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.