The larval Drosophila neuromuscular junction (NMJ) has proven to be an excellent system to test fundamental aspects of synaptic transmission, such as relationships among ion channel function, subtypes of glutamate receptors, and the functions of synaptic proteins in the presynaptic compartment. Recent advances in understanding bi-directional communication between nerves and muscles of Drosophila are helping uncover developmental as well as maintenance cues that could be applicable to all chemical synapses. The development of HL3 medium makes it possible to record synaptic responses at NMJs for prolonged periods of time. We demonstrate that media commonly used to culture CNS neurons and imaginal disks of Drosophila such as Schneider's and M3 completely block glutamatergic synaptic transmission at the NMJ. The depressed postsynaptic excitatory junction potentials (EJPs) partially recover from exposure to such media shortly after switching to the HL3 medium. Preliminary results from NMJs of filleted 3rd instar larvae for 4 days in vitro bathed in a modified HL3 medium show great promise. The resting membrane potential and the EJP amplitudes after 4 days in vitro are normal. These results demonstrate the possibility for chronic studies of developmental regulation in culture, which in some cases are impractical in the whole animal. ᮊ
Aflatoxin B1 (AFB1) appears to be a risk factor for upper respiratory tumors in individuals occupationally exposed to AFB1-contaminated grain dusts. To study the potential effects of this mycotoxin in the upper airways, the metabolism of AFB1 was investigated in tracheal cultures and purified tracheal microsomes from rabbit, hamster and rat. These species differ in the proportion of P450-containing non-ciliated epithelial (NC) cells in the upper airway (17, 41, 0% respectively). Cultures from the rabbit produced the highest level of the AFB1 metabolites AFB1-dihydrodiol (AFB1-diol), GSH-AFB1, AFM1, AFB2a and the highest tracheal microsomal pentoxyresorufin-O-dealkylase (PROD) activity (an indicator of that P450 activity which activates AFB1) and greater cytosolic GSH-transferase activity compared to hamster and rat. Tracheal microsomal epoxide hydrolase activity, AFB1-diol production, cytochrome P450 content, P450 reductase and ethoxyresorufin-O-dealkylase (EROD) activity (an indicator of AFB1 detoxification) were highest in the hamster. Although the overall metabolic activity in rat tracheal epithelium was low, PROD-related activity appeared to predominate. Conjugation with GSH was the major detoxification pathway in rabbit and rat upper airways, although levels of AFB1-GSH and activities of glutathione transferase were significantly lower in the rat than in the rabbit and hamster. Hydrolysis of the putative AFB1-2,3-epoxide via epoxide hydrolase appeared to be the major AFB1 detoxification pathway in hamster tracheal epithelium as indicted by corresponding high tracheal microsomal AFB1-diol production and EH activity compared to rabbit and rat. Glucuronide and sulfate conjugates of AFB1 and its metabolites were formed in tracheal explant cultures from these three species, although amounts formed were minor. These results indicate that rabbit upper airway epithelium contains metabolic activity primarily involved in AFB1 activation, whereas AFB1 detoxification pathways predominante in hamster. Furthermore, the characteristics of carcinogen metabolism are not predictable based solely on airway morphology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.