The Satellite Application Facility on Climate Monitoring (CM-SAF) is aiming to retrieve satellite-derived geophysical parameters suitable for climate monitoring. CM-SAF started routine operations in early 2007 and provides a climatology of parameters describing the global energy and water cycle on a regional scale and partially on a global scale. Here, the authors focus on the performance of cloud detection methods applied to measurements of the Spinning Enhanced Visible and Infrared Imager (SEVIRI) on the first Meteosat Second Generation geostationary spacecraft. The retrieved cloud mask is the basis for calculating the cloud fractional coverage (CFC) but is also mandatory for retrieving other geophysical parameters. Therefore, the quality of the cloud detection directly influences climate monitoring of many other parameters derived from spaceborne sensors. CM-SAF products and results of an alternative cloud coverage retrieval provided by the Institut für Weltraumwissenschaften of the Freie Universität in Berlin, Germany (FUB), were validated against synoptic measurements. Furthermore, and on the basis of case studies, an initial comparison was performed of CM-SAF results with results derived from the Moderate Resolution Imaging Spectrometer (MODIS) and from the Cloud–Aerosol Lidar with Orthogonal Polarization (CALIOP). Results show that the CFC from CM-SAF and FUB agrees well with synoptic data and MODIS data over midlatitudes but is underestimated over the tropics and overestimated toward the edges of the visible Earth disk.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.