A graphical method of analyzing the data obtained from shallowearth-resistivity depth tests is presented. The method is based upon empiricalresults and has no theoretical basis. The usual apparent resistivity-electrodespacing curve is used together with a cumulative resistivity-electrode spacingcurve plotted on the same sheet. The greatly reduced scale required forplotting the cumulative values of resistivity together with the effect of thesummation of the individual resistivity values serves to minimize the effect ofpurely local surface anomalies and inadvertent errors of measurement. The pointof intersection of tangents or straight lines drawn to intersect at zones ofmaximum curvature in the cumulative curve indicates the depth to the underlyingmaterial. Numerous figures are presented in which data from published reportsand from recent field studies are analyzed and the results compared with actualdepths established by borings or with depth values obtained by the use oftheoretical methods of analysis. Smoothly rounded curves of apparentresistivity such as are often obtained in the field, and which have been aserious drawback to attempts to analyze the data empirically heretofore, appearto be susceptible to rather accurate analysis by the method described. The method is best suited to analyses involving shallow two-layerformations. It has been applied successfully, however, in analyzing the dataobtained from tests made over shallow three-layer formations. As with mostempirical methods, its chief advantage is its simplicity and ease ofapplication. Introduction There have been published many papers that discuss the interpretation ofdata obtained from earth-resistivity tests when using the four-terminal methodof electrode spacing developed by Wenner. The majority of these have dealt withtheoretical analyses for two-layer and three-layer formations. Some sets of"master curves" have been presented for use in analyzing field data todetermine the depth to the first and possibly the second horizon below theearth's surface. Although practically all of these theoretical methods ofanalysis have appeared to have particular merit and some have been usedsuccessfully in practice, they have been found to be of little value where thelocal conditions surrounding the test failed to conform to those assumed in thetheory. In certain fields, particularly in civil engineering, relatively shallowexplorations are often involved and geophysical methods of test must competewith the direct methods of exploration ordinarily used. Only when it can bedemonstrated that geophysical methods of test can materially reduce the timeand cost of a given exploration project will the civil engineer abandon directmethods in favor of the interpretations of geophysical exploration data. T.P. 1743
Of the several geophysical methods used in exploration for oil and useful ore bodies, the earth‐resistivity and seismic‐refraction tests have been found to be the most adaptable to the shallow tests generally required in highway construction work. Of these, the earth‐resistivity test is the faster and has a wider range of application to highway problems than does the seismic test. Use of both methods of tests in subsurface explorations for engineering structures is expanding. The paper cites a growing need for a more thorough subsurface investigation of all engineering structure sites and gives examples of field data obtained by the Bureau of Public Roads when making preliminary geophysical surveys of proposed highway locations or structure sites. The economic aspects and the advantages and limitations of the two methods of test are discussed with particular reference to their application to highway engineering problems.
The Loveland Basin landslide occurred in a high mountain valley near the Continental Divide about 55 miles west of Denver during construction of the east portal area for the proposed Straight Creek Tunnel. The landslide developed in Precambrian bedrock, consisting of Silver Plume Granite with inclusions of metasedimentary rocks that are chiefly biotite gneiss and schist. Thin deposits of surficial material, consisting of moraine and soil mixed with talus, overlie the bedrock. The entire area is within the Loveland Pass fault zone. Individual faults within this zone are characterized by masses of breccia and gouge, ranging in width from less than 1 foot to 1,000 feet; these masses are separated by masses of less intensely sheared rock. The preexisting structure partly determined the shape of the landslide. The landslide is outlined by distinct scarps. The upper two-thirds of the landslide is downdropped in relation to the surrounding rock. The lower one-third of the landslide has been thrust upward and outward over the surrounding topography. Within the landslide mass, movement is indicated by tension fractures, which are most numerous near the margins of the mass.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.